BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 20739059)

  • 1. Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes.
    Lunov O; Syrovets T; Röcker C; Tron K; Nienhaus GU; Rasche V; Mailänder V; Landfester K; Simmet T
    Biomaterials; 2010 Dec; 31(34):9015-22. PubMed ID: 20739059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages.
    Lunov O; Syrovets T; Büchele B; Jiang X; Röcker C; Tron K; Nienhaus GU; Walther P; Mailänder V; Landfester K; Simmet T
    Biomaterials; 2010 Jul; 31(19):5063-71. PubMed ID: 20381862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology.
    Yang CY; Tai MF; Lin CP; Lu CW; Wang JL; Hsiao JK; Liu HM
    PLoS One; 2011; 6(9):e25524. PubMed ID: 21991395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of carbohydrate receptors in the macrophage uptake of dextran-coated iron oxide nanoparticles.
    Chao Y; Karmali PP; Simberg D
    Adv Exp Med Biol; 2012; 733():115-23. PubMed ID: 22101717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging.
    Briley-Saebo K; Bjørnerud A; Grant D; Ahlstrom H; Berg T; Kindberg GM
    Cell Tissue Res; 2004 Jun; 316(3):315-23. PubMed ID: 15103550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of static magnetic fields on the aggregation and cytotoxicity of magnetic nanoparticles.
    Bae JE; Huh MI; Ryu BK; Do JY; Jin SU; Moon MJ; Jung JC; Chang Y; Kim E; Chi SG; Lee GH; Chae KS
    Biomaterials; 2011 Dec; 32(35):9401-14. PubMed ID: 21911251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model.
    Murase K; Assanai P; Takata H; Matsumoto N; Saito S; Nishiura M
    Magn Reson Imaging; 2015 Jun; 33(5):600-10. PubMed ID: 25683514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging.
    Arbab AS; Wilson LB; Ashari P; Jordan EK; Lewis BK; Frank JA
    NMR Biomed; 2005 Oct; 18(6):383-9. PubMed ID: 16013087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed hepatic signal recovery on ferucarbotran-enhanced magnetic resonance images: an experimental study in rat livers with gadolinium chloride-induced Kupffer cell damage.
    Furuta T; Yamaguchi M; Nakagami R; Akahane M; Minami M; Ohtomo K; Moriyama N; Fujii H
    MAGMA; 2013 Jun; 26(3):313-24. PubMed ID: 23117343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct labeling of hMSC with SPIO: the long-term influence on toxicity, chondrogenic differentiation capacity, and intracellular distribution.
    Yang CY; Hsiao JK; Tai MF; Chen ST; Cheng HY; Wang JL; Liu HM
    Mol Imaging Biol; 2011 Jun; 13(3):443-451. PubMed ID: 20567925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10.
    Raynal I; Prigent P; Peyramaure S; Najid A; Rebuzzi C; Corot C
    Invest Radiol; 2004 Jan; 39(1):56-63. PubMed ID: 14701989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging of liver metastases: experimental comparison of anionic and conventional superparamagnetic iron oxide particles with a hepatobiliary contrast medium during dynamic and uptake phases.
    Kaufels N; Korn R; Wagner S; Schink T; Hamm B; Taupitz M; Schnorr J
    Invest Radiol; 2008 Jul; 43(7):496-503. PubMed ID: 18580332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Edaravone inhibits the induction of iNOS gene expression at transcriptional and posttranscriptional steps in murine macrophages.
    Yoshida H; Kwon AH; Habara K; Yamada M; Kaibori M; Kamiyama Y; Nishizawa M; Ito S; Okumura T
    Shock; 2008 Dec; 30(6):734-9. PubMed ID: 18496239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of Kupffer Cell Autophagy Abrogates Nanoparticle-Induced Liver Injury.
    Zhu S; Zhang J; Zhang L; Ma W; Man N; Liu Y; Zhou W; Lin J; Wei P; Jin P; Zhang Y; Hu Y; Gu E; Lu X; Yang Z; Liu X; Bai L; Wen L
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28233941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles.
    Huang DM; Hsiao JK; Chen YC; Chien LY; Yao M; Chen YK; Ko BS; Hsu SC; Tai LA; Cheng HY; Wang SW; Yang CS; Chen YC
    Biomaterials; 2009 Aug; 30(22):3645-51. PubMed ID: 19359036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide-induced apoptosis in cultured rat astrocytes: protection by edaravone, a radical scavenger.
    Kawasaki T; Kitao T; Nakagawa K; Fujisaki H; Takegawa Y; Koda K; Ago Y; Baba A; Matsuda T
    Glia; 2007 Oct; 55(13):1325-33. PubMed ID: 17626263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode of action of butoxyethanol-induced mouse liver hemangiosarcomas and hepatocellular carcinomas.
    Klaunig JE; Kamendulis LM
    Toxicol Lett; 2005 Mar; 156(1):107-15. PubMed ID: 15705491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance.
    Simberg D; Park JH; Karmali PP; Zhang WM; Merkulov S; McCrae K; Bhatia SN; Sailor M; Ruoslahti E
    Biomaterials; 2009 Aug; 30(23-24):3926-33. PubMed ID: 19394687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TNF-alpha preserves lysosomal stability in macrophages: a potential defense against oxidative lung injury.
    Persson HL; Vainikka LK
    Toxicol Lett; 2010 Feb; 192(2):261-7. PubMed ID: 19900513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide produced by Kupffer cells is an essential effector in concanavalin A-induced hepatitis in mice.
    Nakashima H; Kinoshita M; Nakashima M; Habu Y; Shono S; Uchida T; Shinomiya N; Seki S
    Hepatology; 2008 Dec; 48(6):1979-88. PubMed ID: 18942689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.