BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20739121)

  • 61. Degradation of bio-based film plastics in soil under natural conditions.
    Slezak R; Krzystek L; Puchalski M; Krucińska I; Sitarski A
    Sci Total Environ; 2023 Mar; 866():161401. PubMed ID: 36608826
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced thermal properties of poly(lactic acid)/MoS
    Homa P; Wenelska K; Mijowska E
    Sci Rep; 2020 Jan; 10(1):740. PubMed ID: 31959835
    [TBL] [Abstract][Full Text] [Related]  

  • 63. pH-Stat Titration: A Rapid Assay for Enzymatic Degradability of Bio-Based Polymers.
    Miksch L; Gutow L; Saborowski R
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33799772
    [TBL] [Abstract][Full Text] [Related]  

  • 64. VOC emissions from particle filtering half masks - methods, risks and need for further action.
    Kerkeling S; Sandten C; Schupp T; Kreyenschmidt M
    EXCLI J; 2021; 20():995-1008. PubMed ID: 34267611
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Triply Biobased Thermoplastic Composites of Polylactide/Succinylated Lignin/Epoxidized Soybean Oil.
    Guo J; Wang J; He Y; Sun H; Chen X; Zheng Q; Xie H
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164360
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The key role of unique crystalline property in the hydrolytic degradation process of microcrystalline cellulose-reinforced stereo-complexed poly(lactic acid) composites.
    Cheng Z; Wang Q; Lei L; Zhao B; Yu T; Fan J; Li Y
    Int J Biol Macromol; 2024 Jul; 275(Pt 1):133656. PubMed ID: 38969048
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analysis of the Effect of Photo and Hydrodegradation on the Surface Morphology and Mechanical Properties of Composites Based on PLA and PHI Modified with Natural Particles.
    Mazur KE; Bazan P; Liber-Kneć A; Stępień J; Puckowski A; Mirowski A; Kuciel S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160821
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of the expansion ability of fermented maize flour and cassava starch during baking.
    Mestres C; Boungou O; Akissoë N; Zakhia N
    J Sci Food Agric; 2000 May; 80(6):665-672. PubMed ID: 29345782
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Emissions of selected monoaromatic hydrocarbons as a factor affecting the removal of single-use polymer barbecue and kitchen utensils from everyday use.
    Marć M
    Sci Total Environ; 2020 Jun; 720():137485. PubMed ID: 32135294
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Review on Properties and Application of Bio-Based Poly(Butylene Succinate).
    Rafiqah SA; Khalina A; Harmaen AS; Tawakkal IA; Zaman K; Asim M; Nurrazi MN; Lee CH
    Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33946989
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo analysis of covering materials composed of biodegradable polymers enriched with flax fibers.
    Gredes T; Schönitz S; Gedrange T; Stepien L; Kozak K; Kunert-Keil C
    Biomater Res; 2017; 21():8. PubMed ID: 28529764
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Supercapacitor and high
    Selvaraj K; Arumugam H; Muthukaruppan A; Kannaiyan SK; Krishnan S; Peethambaram P; Magaraphan R; Kannaiyan D
    Soft Matter; 2022 Nov; 18(46):8779-8791. PubMed ID: 36350261
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Quantification of Wood Flour and Polypropylene in Chinese Fir/Polypropylene Composites by FTIR].
    Lao WL; Li GY; Zhou Q; Qin TF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1546-50. PubMed ID: 26601364
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products.
    Szczepańska N; Marć M; Kudłak B; Simeonov V; Tsakovski S; Namieśnik J
    Ecotoxicol Environ Saf; 2018 Sep; 160():282-289. PubMed ID: 29857233
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts.
    Garg M; White SR; Sottos NR
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46226-46232. PubMed ID: 31774644
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Poly(Lactic Acid)-Based Nanobiocomposites with Modulated Degradation Rates.
    Valentina I; Haroutioun A; Fabrice L; Vincent V; Roberto P
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314349
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour.
    Nainggolan EA; Banout J; Urbanova K
    Foods; 2023 May; 12(11):. PubMed ID: 37297347
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions.
    Stefaniak AB; Bowers LN; Martin SB; Hammond DR; Ham JE; Wells JR; Fortner AR; Knepp AK; du Preez S; Pretty JR; Roberts JL; du Plessis JL; Schmidt A; Duling MG; Bader A; Virji MA
    J Chem Health Saf; 2021 Mar; 28(3):190-200. PubMed ID: 35979329
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Poly(lactic acid)-Poly(butylene succinate)-Sugar Beet Pulp Composites; Part II: Water Absorption Characteristics with Fine and Coarse Sugar Beet Pulp Particles; A Phenomenological Investigation.
    Kopitzky R
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685317
    [TBL] [Abstract][Full Text] [Related]  

  • 80. (Bio)Degradable Polymeric Materials for Sustainable Future-Part 3: Degradation Studies of the PHA/Wood Flour-Based Composites and Preliminary Tests of Antimicrobial Activity.
    Musioł M; Jurczyk S; Sobota M; Klim M; Sikorska W; Zięba M; Janeczek H; Rydz J; Kurcok P; Johnston B; Radecka I
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32403315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.