These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 20739602)
1. Temporal shift from velocity to position proprioceptive feedback control during reaching movements. Niu CM; Corcos DM; Shapiro MB J Neurophysiol; 2010 Nov; 104(5):2512-22. PubMed ID: 20739602 [TBL] [Abstract][Full Text] [Related]
2. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time. Shapiro MB; Gottlieb GL; Corcos DM J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262 [TBL] [Abstract][Full Text] [Related]
3. Kinematic and EMG characteristics of simple shoulder movements with proprioception and visual feedback. Brindle TJ; Nitz AJ; Uhl TL; Kifer E; Shapiro R J Electromyogr Kinesiol; 2006 Jun; 16(3):236-49. PubMed ID: 16111896 [TBL] [Abstract][Full Text] [Related]
4. Maintenance of upright standing posture during trunk rotation elicited by rapid and asymmetrical movements of the arms. Yamazaki Y; Suzuki M; Ohkuwa T; Itoh H Brain Res Bull; 2005 Sep; 67(1-2):30-9. PubMed ID: 16140160 [TBL] [Abstract][Full Text] [Related]
5. Interaction of visual and proprioceptive feedback during adaptation of human reaching movements. Scheidt RA; Conditt MA; Secco EL; Mussa-Ivaldi FA J Neurophysiol; 2005 Jun; 93(6):3200-13. PubMed ID: 15659526 [TBL] [Abstract][Full Text] [Related]
6. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task. Shapiro MB; Niu CM; Poon C; David FJ; Corcos DM Exp Brain Res; 2009 Jun; 195(4):575-91. PubMed ID: 19434401 [TBL] [Abstract][Full Text] [Related]
7. Influence of strategy on muscle activity during impact movements. Gottlieb GL J Mot Behav; 2001 Sep; 33(3):235-42. PubMed ID: 11495828 [TBL] [Abstract][Full Text] [Related]
8. Fusimotor drive may adjust muscle spindle feedback to task requirements in humans. Ribot-Ciscar E; Hospod V; Roll JP; Aimonetti JM J Neurophysiol; 2009 Feb; 101(2):633-40. PubMed ID: 19036863 [TBL] [Abstract][Full Text] [Related]
9. The timing of control signals underlying fast point-to-point arm movements. Ghafouri M; Feldman AG Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386 [TBL] [Abstract][Full Text] [Related]
10. Long-latency responses during reaching account for the mechanical interaction between the shoulder and elbow joints. Kurtzer I; Pruszynski JA; Scott SH J Neurophysiol; 2009 Nov; 102(5):3004-15. PubMed ID: 19710379 [TBL] [Abstract][Full Text] [Related]
11. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement. Debicki DB; Gribble PL J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688 [TBL] [Abstract][Full Text] [Related]
12. Coactivation patterns of the medial and lateral hamstrings based on joint position and movement velocity during isokinetic movements. Croce RV; Miller JP Electromyogr Clin Neurophysiol; 2006; 46(2):113-22. PubMed ID: 16796001 [TBL] [Abstract][Full Text] [Related]
13. Control of Rapid Arm Movements When Target Position Is Altered During Saccadic Suppression. Blouin J; Teasdale N; Bard C; Fleury M J Mot Behav; 1995 Jun; 27(2):114-122. PubMed ID: 12736121 [TBL] [Abstract][Full Text] [Related]
14. Effect of age on anticipatory postural adjustments in unilateral arm movement. Bleuse S; Cassim F; Blatt JL; Labyt E; Derambure P; Guieu JD; Defebvre L Gait Posture; 2006 Oct; 24(2):203-10. PubMed ID: 16213140 [TBL] [Abstract][Full Text] [Related]
15. Proprioceptive coordination of movement sequences: role of velocity and position information. Cordo P; Carlton L; Bevan L; Carlton M; Kerr GK J Neurophysiol; 1994 May; 71(5):1848-61. PubMed ID: 8064352 [TBL] [Abstract][Full Text] [Related]
16. Movement patterns underlying first trial responses in human balance corrections. Tang KS; Honegger F; Allum JH Neuroscience; 2012 Dec; 225():140-51. PubMed ID: 22982621 [TBL] [Abstract][Full Text] [Related]
17. Quantifying proprioceptive reflexes during position control of the human arm. Schouten AC; de Vlugt E; van Hilten JJ; van der Helm FC IEEE Trans Biomed Eng; 2008 Jan; 55(1):311-21. PubMed ID: 18232375 [TBL] [Abstract][Full Text] [Related]
18. Role of cocontraction in arm movement accuracy. Gribble PL; Mullin LI; Cothros N; Mattar A J Neurophysiol; 2003 May; 89(5):2396-405. PubMed ID: 12611935 [TBL] [Abstract][Full Text] [Related]
19. Central modifications of reflex parameters may underlie the fastest arm movements. Adamovich SV; Levin MF; Feldman AG J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611 [TBL] [Abstract][Full Text] [Related]
20. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques. Pigeon P; Bortolami SB; DiZio P; Lackner JR J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]