BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20739710)

  • 21. Evidence from comparative genomics for a complete sexual cycle in the 'asexual' pathogenic yeast Candida glabrata.
    Wong S; Fares MA; Zimmermann W; Butler G; Wolfe KH
    Genome Biol; 2003; 4(2):R10. PubMed ID: 12620120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Establishment of a screening system for essential genes from the pathogenic yeast Candida glabrata: identification of a putative TEM1 homologue.
    Miyakawa Y; Hara T; Iimura Y
    Lett Appl Microbiol; 2009 Sep; 49(3):317-23. PubMed ID: 19552769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The inositol regulon controls viability in Candida glabrata.
    Bethea EK; Carver BJ; Montedonico AE; Reynolds TB
    Microbiology (Reading); 2010 Feb; 156(Pt 2):452-462. PubMed ID: 19875437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the essentiality of ROM2 genes in the pathogenic yeasts Candida glabrata and Candida albicans using temperature-sensitive mutants.
    Kanno T; Takekawa D; Miyakawa Y
    J Appl Microbiol; 2015 Apr; 118(4):851-63. PubMed ID: 25604069
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Novel
    Iosue CL; Gulotta AP; Selhorst KB; Mody AC; Barbour KM; Marcotte MJ; Bui LN; Leone SG; Lang EC; Hughes GH; Wykoff DD
    G3 (Bethesda); 2020 Jan; 10(1):321-331. PubMed ID: 31732505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Function of hybrid human-yeast cyclin-dependent kinases in Saccharomyces cerevisiae.
    Bitter GA
    Mol Gen Genet; 1998 Oct; 260(1):120-30. PubMed ID: 9829836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional characterization of the regulators of calcineurin in Candida glabrata.
    Miyazaki T; Izumikawa K; Nagayoshi Y; Saijo T; Yamauchi S; Morinaga Y; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Miyazaki Y; Kohno S
    FEMS Yeast Res; 2011 Dec; 11(8):621-30. PubMed ID: 22093746
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The reconstruction of condition-specific transcriptional modules provides new insights in the evolution of yeast AP-1 proteins.
    Goudot C; Etchebest C; Devaux F; Lelandais G
    PLoS One; 2011; 6(6):e20924. PubMed ID: 21695268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The regulation of iron homeostasis in the fungal human pathogen
    Devaux F; Thiébaut A
    Microbiology (Reading); 2019 Oct; 165(10):1041-1060. PubMed ID: 31050635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato.
    Baldwin JC; Karthikeyan AS; Raghothama KG
    Plant Physiol; 2001 Feb; 125(2):728-37. PubMed ID: 11161030
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbonic anhydrase regulation and CO(2) sensing in the fungal pathogen Candida glabrata involves a novel Rca1p ortholog.
    Cottier F; Leewattanapasuk W; Kemp LR; Murphy M; Supuran CT; Kurzai O; Mühlschlegel FA
    Bioorg Med Chem; 2013 Mar; 21(6):1549-54. PubMed ID: 22727373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae.
    Lau WW; Schneider KR; O'Shea EK
    Genetics; 1998 Dec; 150(4):1349-59. PubMed ID: 9832515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.
    Sanglard D; Coste AT
    Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative regulatory elements of the Saccharomyces cerevisiae PHO system: interaction between PHO80 and PHO85 proteins.
    Gilliquet V; Legrain M; Berben G; Hilger F
    Gene; 1990 Dec; 96(2):181-8. PubMed ID: 2269431
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata.
    Brunke S; Seider K; Richter ME; Bremer-Streck S; Ramachandra S; Kiehntopf M; Brock M; Hube B
    Eukaryot Cell; 2014 Jun; 13(6):758-65. PubMed ID: 24728193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cnh1 Na(+) /H(+) antiporter and Ena1 Na(+) -ATPase play different roles in cation homeostasis and cell physiology of Candida glabrata.
    Krauke Y; Sychrova H
    FEMS Yeast Res; 2011 Feb; 11(1):29-41. PubMed ID: 20942808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication.
    Merhej J; Delaveau T; Guitard J; Palancade B; Hennequin C; Garcia M; Lelandais G; Devaux F
    Mol Microbiol; 2015 Jun; 96(5):951-72. PubMed ID: 25732006
    [TBL] [Abstract][Full Text] [Related]  

  • 38. APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity.
    Kaur P; Lingner A; Singh B; Böer E; Polajeva J; Steinborn G; Bode R; Gellissen G; Satyanarayana T; Kunze G
    Antonie Van Leeuwenhoek; 2007 Jan; 91(1):45-55. PubMed ID: 17016743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Choice of an adequate promoter for efficient complementation in Saccharomyces cerevisiae: a case study.
    Lo Presti L; Cerutti L; Monod M; Hauser PM
    Res Microbiol; 2009; 160(6):380-8. PubMed ID: 19589384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular analysis of the DNA sequences involved in the transcriptional regulation of the phosphate-repressible acid phosphatase gene (PHO5) of Saccharomyces cerevisiae.
    Bergman LW; McClinton DC; Madden SL; Preis LH
    Proc Natl Acad Sci U S A; 1986 Aug; 83(16):6070-4. PubMed ID: 3526349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.