BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20739710)

  • 41. Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation.
    Calcagno AM; Bignell E; Warn P; Jones MD; Denning DW; Mühlschlegel FA; Rogers TR; Haynes K
    Mol Microbiol; 2003 Nov; 50(4):1309-18. PubMed ID: 14622417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins.
    de Groot PW; Kraneveld EA; Yin QY; Dekker HL; Gross U; Crielaard W; de Koster CG; Bader O; Klis FM; Weig M
    Eukaryot Cell; 2008 Nov; 7(11):1951-64. PubMed ID: 18806209
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a Candida albicans homologue of the PHO85 gene, a negative regulator of the PHO system in Saccharomyces cerevisiae.
    Miyakawa Y
    Yeast; 2000 Aug; 16(11):1045-51. PubMed ID: 10923026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple interfaces control activity of the Candida glabrata Pdr1 transcription factor mediating azole drug resistance.
    Moye-Rowley WS
    Curr Genet; 2019 Feb; 65(1):103-108. PubMed ID: 30056490
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of a Candida glabrata homologue of the S. cerevisiae VRG4 gene, encoding the Golgi GDP-mannose transporter.
    Nishikawa A; Mendez B; Jigami Y; Dean N
    Yeast; 2002 Jun; 19(8):691-8. PubMed ID: 12185838
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A system for gene cloning and manipulation in the yeast Candida glabrata.
    Zhou P; Szczypka MS; Young R; Thiele DJ
    Gene; 1994 May; 142(1):135-40. PubMed ID: 8181748
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product.
    Payne WE; Gannon PM; Kaiser CA
    Gene; 1995 Sep; 163(1):19-26. PubMed ID: 7557473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris.
    Bader O; Krauke Y; Hube B
    BMC Microbiol; 2008 Jul; 8():116. PubMed ID: 18625069
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three mating type-like loci in Candida glabrata.
    Srikantha T; Lachke SA; Soll DR
    Eukaryot Cell; 2003 Apr; 2(2):328-40. PubMed ID: 12684382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The phosphorelay signal transduction system in Candida glabrata: an in silico analysis.
    Carapia-Minero N; Castelán-Vega JA; Pérez NO; Rodríguez-Tovar AV
    J Mol Model; 2017 Dec; 24(1):13. PubMed ID: 29248994
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown.
    Andreeva N; Ledova L; Ryasanova L; Kulakovskaya T; Eldarov M
    Folia Microbiol (Praha); 2019 Nov; 64(6):867-873. PubMed ID: 30937822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae.
    Auesukaree C; Tochio H; Shirakawa M; Kaneko Y; Harashima S
    J Biol Chem; 2005 Jul; 280(26):25127-33. PubMed ID: 15866881
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.
    Nishikawa JL; Boeszoermenyi A; Vale-Silva LA; Torelli R; Posteraro B; Sohn YJ; Ji F; Gelev V; Sanglard D; Sanguinetti M; Sadreyev RI; Mukherjee G; Bhyravabhotla J; Buhrlage SJ; Gray NS; Wagner G; Näär AM; Arthanari H
    Nature; 2016 Feb; 530(7591):485-9. PubMed ID: 26886795
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A system for deletion and complementation of Candida glabrata genes amenable to high-throughput application.
    Willins DA; Shimer GH; Cottarel G
    Gene; 2002 Jun; 292(1-2):141-9. PubMed ID: 12119108
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genome mining, in silico validation and phase selection of a novel aldo-keto reductase from Candida glabrata for biotransformation.
    Basak S; Sahoo NG; Pavanasam AK
    Bioengineered; 2018 Jan; 9(1):186-195. PubMed ID: 28644714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of mutations affecting expression of the delta9- fatty acid desaturase gene, OLE1, in Saccharomyces cerevisiae.
    Fujimori K; Anamnart S; Nakagawa Y; Sugioka S; Ohta D; Oshima Y; Yamada Y; Harashima S
    FEBS Lett; 1997 Aug; 413(2):226-30. PubMed ID: 9280286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [A case of micafungin-hyposensitive Candida glabrata due to FKS2 gene mutation].
    Inui S; Nakamura T; Tanabe K; Ohno H; Koike C; Okuda K; Nakata C; Fujimoto H; Ohkura H; Miyazaki Y; Takahashi H
    Kansenshogaku Zasshi; 2014 May; 88(3 Suppl 9-10):6-10. PubMed ID: 24979950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new regulator in the crossroads of oxidative stress resistance and virulence in
    Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC
    Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521
    [No Abstract]   [Full Text] [Related]  

  • 59. Understand the genomic diversity and evolution of fungal pathogen Candida glabrata by genome-wide analysis of genetic variations.
    Guo X; Zhang R; Li Y; Wang Z; Ishchuk OP; Ahmad KM; Wee J; Piskur J; Shapiro JA; Gu Z
    Methods; 2020 Apr; 176():82-90. PubMed ID: 31059831
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Core regulatory components of the PHO pathway are conserved in the methylotrophic yeast Hansenula polymorpha.
    Zhou Y; Yuikawa N; Nakatsuka H; Maekawa H; Harashima S; Nakanishi Y; Kaneko Y
    Curr Genet; 2016 Aug; 62(3):595-605. PubMed ID: 26794724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.