BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 20739927)

  • 1. A model of yeast cell-cycle regulation based on multisite phosphorylation.
    Barik D; Baumann WT; Paul MR; Novak B; Tyson JJ
    Mol Syst Biol; 2010 Aug; 6():405. PubMed ID: 20739927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stochastic model of size control in the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Cao Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):322. PubMed ID: 31216979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the roles of noise in the eukaryotic cell cycle.
    Kar S; Baumann WT; Paul MR; Tyson JJ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6471-6. PubMed ID: 19246388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of molecular noise and size control on variability in the budding yeast cell cycle.
    Di Talia S; Skotheim JM; Bean JM; Siggia ED; Cross FR
    Nature; 2007 Aug; 448(7156):947-51. PubMed ID: 17713537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable stochastic dynamics in yeast cell cycle.
    Okabe Y; Sasai M
    Biophys J; 2007 Nov; 93(10):3451-9. PubMed ID: 17704157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity.
    Braunewell S; Bornholdt S
    J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast.
    Sia RA; Herald HA; Lew DJ
    Mol Biol Cell; 1996 Nov; 7(11):1657-66. PubMed ID: 8930890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positive feedback of G1 cyclins ensures coherent cell cycle entry.
    Skotheim JM; Di Talia S; Siggia ED; Cross FR
    Nature; 2008 Jul; 454(7202):291-6. PubMed ID: 18633409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low number of SIC1 mRNA molecules ensures a low noise level in cell cycle progression of budding yeast.
    Barberis M; Beck C; Amoussouvi A; Schreiber G; Diener C; Herrmann A; Klipp E
    Mol Biosyst; 2011 Oct; 7(10):2804-12. PubMed ID: 21717009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.
    Barik D; Ball DA; Peccoud J; Tyson JJ
    PLoS Comput Biol; 2016 Dec; 12(12):e1005230. PubMed ID: 27935947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast.
    Costanzo M; Nishikawa JL; Tang X; Millman JS; Schub O; Breitkreuz K; Dewar D; Rupes I; Andrews B; Tyers M
    Cell; 2004 Jun; 117(7):899-913. PubMed ID: 15210111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential counteracting kinases restrict an asymmetric gene expression program to early G1.
    Mazanka E; Weiss EL
    Mol Biol Cell; 2010 Aug; 21(16):2809-20. PubMed ID: 20573982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental testing of a new integrated model of the budding yeast Start transition.
    Adames NR; Schuck PL; Chen KC; Murali TM; Tyson JJ; Peccoud J
    Mol Biol Cell; 2015 Nov; 26(22):3966-84. PubMed ID: 26310445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1.
    Knapp D; Bhoite L; Stillman DJ; Nasmyth K
    Mol Cell Biol; 1996 Oct; 16(10):5701-7. PubMed ID: 8816483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer evaluation of network dynamics models with application to cell cycle control in budding yeast.
    Allen NA; Chen KC; Shaffer CA; Tyson JJ; Watson LT
    Syst Biol (Stevenage); 2006 Jan; 153(1):13-21. PubMed ID: 16983831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to grow a bud: an importin acts in asymmetric division.
    Goldfarb DS
    Nat Cell Biol; 2009 Mar; 11(3):243-5. PubMed ID: 19255571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle-dependent transcription of CLN2 is conferred by multiple distinct cis-acting regulatory elements.
    Stuart D; Wittenberg C
    Mol Cell Biol; 1994 Jul; 14(7):4788-801. PubMed ID: 8007978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model correctly predicts changes in budding yeast cell cycle dynamics upon periodic expression of CLN2.
    Oguz C; Palmisano A; Laomettachit T; Watson LT; Baumann WT; Tyson JJ
    PLoS One; 2014; 9(5):e96726. PubMed ID: 24816736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate.
    Palumbo P; Vanoni M; Cusimano V; Busti S; Marano F; Manes C; Alberghina L
    Nat Commun; 2016 Apr; 7():11372. PubMed ID: 27094800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclin-specific START events and the G1-phase specificity of arrest by mating factor in budding yeast.
    Oehlen LJ; Jeoung DI; Cross FR
    Mol Gen Genet; 1998 May; 258(3):183-98. PubMed ID: 9645424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.