BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20740451)

  • 21. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Density-property relationships in mineralized collagen-glycosaminoglycan scaffolds.
    Kanungo BP; Gibson LJ
    Acta Biomater; 2009 May; 5(4):1006-18. PubMed ID: 19121982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Primary study on histocompatibility of three kinds of collagen-chitosan porous scaffolds].
    Hu X; Han C; Shi H; Ma L; Gao C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Oct; 19(10):826-30. PubMed ID: 16274135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes.
    Haugh MG; Murphy CM; O'Brien FJ
    Tissue Eng Part C Methods; 2010 Oct; 16(5):887-94. PubMed ID: 19903089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing amine terminals in an amine-deprived collagen matrix.
    Tiong WH; Damodaran G; Naik H; Kelly JL; Pandit A
    Langmuir; 2008 Oct; 24(20):11752-61. PubMed ID: 18774827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material.
    Sun L; Li B; Jiang D; Hou H
    Colloids Surf B Biointerfaces; 2017 Nov; 159():89-96. PubMed ID: 28780464
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous processing of fibril formation and cross-linking improves mechanical properties of collagen.
    Yunoki S; Matsuda T
    Biomacromolecules; 2008 Mar; 9(3):879-85. PubMed ID: 18260634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced biological stability of collagen with incorporation of PAMAM dendrimer.
    Zhong S; Yung LY
    J Biomed Mater Res A; 2009 Oct; 91(1):114-22. PubMed ID: 18767056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. I. In vitro/in vivo stability of the scaffold and in vitro sensitivity of the glucose sensor with scaffold.
    Ju YM; Yu B; Koob TJ; Moussy Y; Moussy F
    J Biomed Mater Res A; 2008 Oct; 87(1):136-46. PubMed ID: 18085651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical and thermal cross-linking of collagen and elastin hydrolysates.
    Sionkowska A; Skopinska-Wisniewska J; Gawron M; Kozlowska J; Planecka A
    Int J Biol Macromol; 2010 Nov; 47(4):570-7. PubMed ID: 20713081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Substrate stiffness and contractile behaviour modulate the functional maturation of osteoblasts on a collagen-GAG scaffold.
    Keogh MB; O'Brien FJ; Daly JS
    Acta Biomater; 2010 Nov; 6(11):4305-13. PubMed ID: 20570642
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds.
    Buijtenhuijs P; Buttafoco L; Poot AA; Daamen WF; van Kuppevelt TH; Dijkstra PJ; de Vos RA; Sterk LM; Geelkerken BR; Feijen J; Vermes I
    Biotechnol Appl Biochem; 2004 Apr; 39(Pt 2):141-9. PubMed ID: 15032734
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen scaffolds derived from a marine source and their biocompatibility.
    Song E; Yeon Kim S; Chun T; Byun HJ; Lee YM
    Biomaterials; 2006 May; 27(15):2951-61. PubMed ID: 16457878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and theoretical studies on Gallic acid assisted EDC/NHS initiated crosslinked collagen scaffolds.
    Krishnamoorthy G; Selvakumar R; Sastry TP; Sadulla S; Mandal AB; Doble M
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():164-71. PubMed ID: 25175201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and analysis of braid-twist collagen scaffolds.
    Walters VI; Kwansa AL; Freeman JW
    Connect Tissue Res; 2012; 53(3):255-66. PubMed ID: 22149930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gelatin-fibrinogen cryogel dermal matrices for wound repair: preparation, optimisation and in vitro study.
    Dainiak MB; Allan IU; Savina IN; Cornelio L; James ES; James SL; Mikhalovsky SV; Jungvid H; Galaev IY
    Biomaterials; 2010 Jan; 31(1):67-76. PubMed ID: 19783036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbodiimide cross-linked hyaluronic acid hydrogels as cell sheet delivery vehicles: characterization and interaction with corneal endothelial cells.
    Lu PL; Lai JY; Ma DH; Hsiue GH
    J Biomater Sci Polym Ed; 2008; 19(1):1-18. PubMed ID: 18177550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The increase in denaturation temperature following cross-linking of collagen is caused by dehydration of the fibres.
    Miles CA; Avery NC; Rodin VV; Bailey AJ
    J Mol Biol; 2005 Feb; 346(2):551-6. PubMed ID: 15670603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.
    Burugapalli K; Chan JC; Naik H; Kelly JL; Pandit A
    J Biomater Sci Polym Ed; 2009; 20(7-8):1049-63. PubMed ID: 19454168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering.
    Zhang F; He C; Cao L; Feng W; Wang H; Mo X; Wang J
    Int J Biol Macromol; 2011 Apr; 48(3):474-81. PubMed ID: 21255605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.