BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20740490)

  • 1. Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices.
    Bailey JL; Critser PJ; Whittington C; Kuske JL; Yoder MC; Voytik-Harbin SL
    Biopolymers; 2011 Feb; 95(2):77-93. PubMed ID: 20740490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerization and matrix physical properties as important design considerations for soluble collagen formulations.
    Kreger ST; Bell BJ; Bailey J; Stites E; Kuske J; Waisner B; Voytik-Harbin SL
    Biopolymers; 2010 Aug; 93(8):690-707. PubMed ID: 20235198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligomers modulate interfibril branching and mass transport properties of collagen matrices.
    Whittington CF; Brandner E; Teo KY; Han B; Nauman E; Voytik-Harbin SL
    Microsc Microanal; 2013 Oct; 19(5):1323-33. PubMed ID: 23842082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen-polymer guidance of vessel network formation and stabilization by endothelial colony forming cells in vitro.
    Whittington CF; Yoder MC; Voytik-Harbin SL
    Macromol Biosci; 2013 Sep; 13(9):1135-49. PubMed ID: 23832790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronan concentration within a 3D collagen matrix modulates matrix viscoelasticity, but not fibroblast response.
    Kreger ST; Voytik-Harbin SL
    Matrix Biol; 2009 Jul; 28(6):336-46. PubMed ID: 19442729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure.
    Roeder BA; Kokini K; Sturgis JE; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2002 Apr; 124(2):214-22. PubMed ID: 12002131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.
    Sapudom J; Rubner S; Martin S; Kurth T; Riedel S; Mierke CT; Pompe T
    Biomaterials; 2015 Jun; 52():367-75. PubMed ID: 25818443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructural parameter-based modeling for transport properties of collagen matrices.
    Park S; Whittington C; Voytik-Harbin SL; Han B
    J Biomech Eng; 2015 Jun; 137(6):061003. PubMed ID: 25728145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.
    Chitteti BR; Kacena MA; Voytik-Harbin SL; Srour EF
    J Immunol Methods; 2015 Oct; 425():108-113. PubMed ID: 26159389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
    Brightman AO; Rajwa BP; Sturgis JE; McCallister ME; Robinson JP; Voytik-Harbin SL
    Biopolymers; 2000 Sep; 54(3):222-34. PubMed ID: 10861383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell encapsulation in a magnetically aligned collagen-GAG copolymer microenvironment.
    Novak T; Voytik-Harbin SL; Neu CP
    Acta Biomater; 2015 Jan; 11():274-82. PubMed ID: 25257315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local, three-dimensional strain measurements within largely deformed extracellular matrix constructs.
    Roeder BA; Kokini K; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2004 Dec; 126(6):699-708. PubMed ID: 15796328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acellular and cellular high-density, collagen-fibril constructs with suprafibrillar organization.
    Blum KM; Novak T; Watkins L; Neu CP; Wallace JM; Bart ZR; Voytik-Harbin SL
    Biomater Sci; 2016 Apr; 4(4):711-23. PubMed ID: 26902645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of collagen matrices as a phase transition revealed by structural and rheologic studies.
    Forgacs G; Newman SA; Hinner B; Maier CW; Sackmann E
    Biophys J; 2003 Feb; 84(2 Pt 1):1272-80. PubMed ID: 12547807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibril bending stiffness of 3D collagen matrices instructs spreading and clustering of invasive and non-invasive breast cancer cells.
    Sapudom J; Kalbitzer L; Wu X; Martin S; Kroy K; Pompe T
    Biomaterials; 2019 Feb; 193():47-57. PubMed ID: 30554026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure and mechanics of collagen-fibrin matrices polymerized using ancrod snake venom enzyme.
    Rowe SL; Stegemann JP
    J Biomech Eng; 2009 Jun; 131(6):061012. PubMed ID: 19449966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.
    Kalbitzer L; Pompe T
    Acta Biomater; 2018 Feb; 67():206-214. PubMed ID: 29208553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.
    Dhimolea E; Soto AM; Sonnenschein C
    J Biomed Mater Res A; 2012 Nov; 100(11):2905-12. PubMed ID: 22696203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a three-dimensional unit cell to model the micromechanical response of a collagen-based extracellular matrix.
    Susilo ME; Roeder BA; Voytik-Harbin SL; Kokini K; Nauman EA
    Acta Biomater; 2010 Apr; 6(4):1471-86. PubMed ID: 19913642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.