BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20740603)

  • 1. Biocompatibility of poly(ethylene glycol)-based hydrogels in the brain: an analysis of the glial response across space and time.
    Bjugstad KB; Lampe K; Kern DS; Mahoney M
    J Biomed Mater Res A; 2010 Oct; 95(1):79-91. PubMed ID: 20740603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The administration of BDNF and GDNF to the brain via PLGA microparticles patterned within a degradable PEG-based hydrogel: Protein distribution and the glial response.
    Lampe KJ; Kern DS; Mahoney MJ; Bjugstad KB
    J Biomed Mater Res A; 2011 Mar; 96(3):595-607. PubMed ID: 21254391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility of PEG-based hydrogels in primate brain.
    Bjugstad KB; Redmond DE; Lampe KJ; Kern DS; Sladek JR; Mahoney MJ
    Cell Transplant; 2008; 17(4):409-15. PubMed ID: 18522243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implantation of functionalized thermally gelling xyloglucan hydrogel within the brain: associated neurite infiltration and inflammatory response.
    Nisbet DR; Rodda AE; Horne MK; Forsythe JS; Finkelstein DI
    Tissue Eng Part A; 2010 Sep; 16(9):2833-42. PubMed ID: 20408769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture.
    Lampe KJ; Mooney RG; Bjugstad KB; Mahoney MJ
    J Biomed Mater Res A; 2010 Sep; 94(4):1162-71. PubMed ID: 20694983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
    Chiu YC; Cheng MH; Engel H; Kao SW; Larson JC; Gupta S; Brey EM
    Biomaterials; 2011 Sep; 32(26):6045-51. PubMed ID: 21663958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the in vitro macrophage response and in vivo host response to poly(ethylene glycol)-based hydrogels.
    Lynn AD; Kyriakides TR; Bryant SJ
    J Biomed Mater Res A; 2010 Jun; 93(3):941-53. PubMed ID: 19708075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel, tissue occlusive poly(ethylene glycol) hydrogel material.
    Wechsler S; Fehr D; Molenberg A; Raeber G; Schense JC; Weber FE
    J Biomed Mater Res A; 2008 May; 85(2):285-92. PubMed ID: 17688293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering.
    Brandl FP; Seitz AK; Tessmar JK; Blunk T; Göpferich AM
    Biomaterials; 2010 May; 31(14):3957-66. PubMed ID: 20170951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.
    Oss-Ronen L; Seliktar D
    Acta Biomater; 2011 Jan; 7(1):163-70. PubMed ID: 20643230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain.
    Nisbet DR; Rodda AE; Horne MK; Forsythe JS; Finkelstein DI
    Biomaterials; 2009 Sep; 30(27):4573-80. PubMed ID: 19500836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels.
    Nicodemus GD; Shiplet KA; Kaltz SR; Bryant SJ
    Biotechnol Bioeng; 2009 Feb; 102(3):948-59. PubMed ID: 18831003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dually responsive injectable hydrogel prepared by in situ cross-linking of glycol chitosan and benzaldehyde-capped PEO-PPO-PEO.
    Ding C; Zhao L; Liu F; Cheng J; Gu J; Dan S; Liu C; Qu X; Yang Z
    Biomacromolecules; 2010 Apr; 11(4):1043-51. PubMed ID: 20337439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photopolymerized poly(ethylene glycol)/poly(L-lysine) hydrogels for the delivery of neural progenitor cells.
    Royce Hynes S; McGregor LM; Ford Rauch M; Lavik EB
    J Biomater Sci Polym Ed; 2007; 18(8):1017-30. PubMed ID: 17705996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat.
    Azab AK; Doviner V; Orkin B; Kleinstern J; Srebnik M; Nissan A; Rubinstein A
    J Biomed Mater Res A; 2007 Nov; 83(2):414-22. PubMed ID: 17455216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.
    Bryant SJ; Anseth KS; Lee DA; Bader DL
    J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.