These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20740662)

  • 1. Human brain atlas-based volumetry and relaxometry: application to healthy development and natural aging.
    Hasan KM; Walimuni IS; Kramer LA; Frye RE
    Magn Reson Med; 2010 Nov; 64(5):1382-9. PubMed ID: 20740662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxo-volumetric multispectral quantitative magnetic resonance imaging of the brain over the human lifespan: global and regional aging patterns.
    Saito N; Sakai O; Ozonoff A; Jara H
    Magn Reson Imaging; 2009 Sep; 27(7):895-906. PubMed ID: 19520539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo whole-brain T1-rho mapping across adulthood: normative values and age dependence.
    Watts R; Andrews T; Hipko S; Gonyea JV; Filippi CG
    J Magn Reson Imaging; 2014 Aug; 40(2):376-82. PubMed ID: 24227659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation and volumetric analysis of the caudate nucleus in Alzheimer's disease.
    Jiji S; Smitha KA; Gupta AK; Pillai VP; Jayasree RS
    Eur J Radiol; 2013 Sep; 82(9):1525-30. PubMed ID: 23664648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atlas-based and DTI-guided quantification of human brain cerebral blood flow: feasibility, quality assurance, spatial heterogeneity and age effects.
    Hasan KM; Ali H; Shad MU
    Magn Reson Imaging; 2013 Oct; 31(8):1445-52. PubMed ID: 23731534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering of atlas-defined cortical regions based on relaxation times and proton density.
    Aubert-Broche B; Grova C; Pike GB; Collins DL
    Neuroimage; 2009 Aug; 47(2):523-32. PubMed ID: 19426811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis.
    Cobzas D; Sun H; Walsh AJ; Lebel RM; Blevins G; Wilman AH
    J Magn Reson Imaging; 2015 Dec; 42(6):1601-10. PubMed ID: 25980643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voxel-based iterative sensitivity (VBIS) analysis: methods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis.
    Abbott DF; Pell GS; Pardoe H; Jackson GD
    Neuroimage; 2009 Feb; 44(3):812-9. PubMed ID: 18996207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White matter abnormalities in autism detected through transverse relaxation time imaging.
    Hendry J; DeVito T; Gelman N; Densmore M; Rajakumar N; Pavlosky W; Williamson PC; Thompson PM; Drost DJ; Nicolson R
    Neuroimage; 2006 Feb; 29(4):1049-57. PubMed ID: 16214373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Texture anisotropy of the brain's white matter as revealed by anatomical MRI.
    Kovalev V; Kruggel F
    IEEE Trans Med Imaging; 2007 May; 26(5):678-85. PubMed ID: 17518062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-body T2* mapping at 1.5 T.
    Rossi C; Boss A; Haap M; Martirosian P; Claussen CD; Schick F
    Magn Reson Imaging; 2009 May; 27(4):489-96. PubMed ID: 18814986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transverse relaxometry with reduced echo train lengths via stimulated echo compensation.
    Uddin MN; Marc Lebel R; Wilman AH
    Magn Reson Med; 2013 Nov; 70(5):1340-6. PubMed ID: 23325543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible, irreversible and effective transverse relaxation rates in normal aging brain at 3T.
    Sedlacik J; Boelmans K; Löbel U; Holst B; Siemonsen S; Fiehler J
    Neuroimage; 2014 Jan; 84():1032-41. PubMed ID: 24004692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical representation of mean diffusivity and fractional anisotropy brain maps of normal subjects.
    Ardekani S; Sinha U
    J Magn Reson Imaging; 2006 Dec; 24(6):1243-51. PubMed ID: 17083103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Brain volumetric MRI study in healthy elderly persons using statistical parametric mapping].
    Miyahira Y; Yu J; Hiramatsu K; Shimazaki Y; Takeda Y
    Seishin Shinkeigaku Zasshi; 2004; 106(2):138-51. PubMed ID: 15052785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative mapping of T2 using partial spoiling.
    Bieri O; Scheffler K; Welsch GH; Trattnig S; Mamisch TC; Ganter C
    Magn Reson Med; 2011 Aug; 66(2):410-8. PubMed ID: 21394766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A longitudinal study of brain volume changes in normal aging.
    Takao H; Hayashi N; Ohtomo K
    Eur J Radiol; 2012 Oct; 81(10):2801-4. PubMed ID: 22104089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of visual experience on structural organization of the human brain: a voxel based morphometric study using DARTEL.
    Modi S; Bhattacharya M; Singh N; Tripathi RP; Khushu S
    Eur J Radiol; 2012 Oct; 81(10):2811-9. PubMed ID: 22100371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gender, age-related, and regional differences of the magnetization transfer ratio of the cortical and subcortical brain gray matter.
    Mascalchi M; Toschi N; Ginestroni A; Giannelli M; Nicolai E; Aiello M; Soricelli A; Diciotti S
    J Magn Reson Imaging; 2014 Aug; 40(2):360-6. PubMed ID: 24923993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.