BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 2074459)

  • 21. NK1 receptor-expressing spinoparabrachial neurons trigger diffuse noxious inhibitory controls through lateral parabrachial activation in the male rat.
    Lapirot O; Chebbi R; Monconduit L; Artola A; Dallel R; Luccarini P
    Pain; 2009 Apr; 142(3):245-254. PubMed ID: 19231081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The spino(trigemino)pontoamygdaloid pathway: electrophysiological evidence for an involvement in pain processes.
    Bernard JF; Besson JM
    J Neurophysiol; 1990 Mar; 63(3):473-90. PubMed ID: 2329357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiological properties of the lamina I spinoparabrachial neurons in the rat.
    Bester H; Chapman V; Besson JM; Bernard JF
    J Neurophysiol; 2000 Apr; 83(4):2239-59. PubMed ID: 10758132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area.
    Meng ID; Hu JW; Benetti AP; Bereiter DA
    J Neurophysiol; 1997 Jan; 77(1):43-56. PubMed ID: 9120584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphine microinjections into periaqueductal grey matter of the rat: effects on dorsal horn neuronal responses to C-fibre activity and diffuse noxious inhibitory controls.
    Dickenson AH; Le Bars D
    Life Sci; 1983; 33 Suppl 1():549-52. PubMed ID: 6664236
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diffuse noxious inhibitory controls (DNIC): evidence for post-synaptic inhibition of trigeminal nucleus caudalis convergent neurones.
    Villanueva L; Cadden SW; Le Bars D
    Brain Res; 1984 Oct; 321(1):165-8. PubMed ID: 6149790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal pathways mediating tonic or stimulation-produced descending inhibition from the periaqueductal gray or nucleus raphe magnus are separate in the cat.
    Sandkühler J; Fu QG; Zimmermann M
    J Neurophysiol; 1987 Aug; 58(2):327-41. PubMed ID: 3655871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of systemic morphine upon diffuse noxious inhibitory controls (DNIC) in the rat: evidence for a lifting of certain descending inhibitory controls of dorsal horn convergent neurones.
    Le Bars D; Chitour D; Kraus E; Clot AM; Dickenson AH; Besson JM
    Brain Res; 1981 Jun; 215(1-2):257-74. PubMed ID: 7260590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spino (trigemino) parabrachiohypothalamic pathway: electrophysiological evidence for an involvement in pain processes.
    Bester H; Menendez L; Besson JM; Bernard JF
    J Neurophysiol; 1995 Feb; 73(2):568-85. PubMed ID: 7760119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dorsal horn (convergent) neurones in the intact anaesthetized arthritic rat. II. Heterotopic inhibitory influences.
    Calvino B; Villanueva L; Le Bars D
    Pain; 1987 Dec; 31(3):359-379. PubMed ID: 3696751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat.
    Bouhassira D; Villanueva L; Bing Z; le Bars D
    Brain Res; 1992 Nov; 595(2):353-7. PubMed ID: 1467976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological properties of sensory trigeminal neurons projecting to mesencephalic parabrachial area in the cat.
    Hayashi H; Tabata T
    J Neurophysiol; 1989 Jun; 61(6):1153-60. PubMed ID: 2746316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between mechano-receptive fields of dorsal horn convergent neurons and the response to noxious immersion of the ipsilateral hindpaw in rats.
    McGaraughty S; Henry JL
    Pain; 1997 Apr; 70(2-3):133-40. PubMed ID: 9150286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formalin-induced differential activation of nucleus cuneiformis neurons in the rat: an electrophysiological study.
    Haghparast A; Naderi N; Khani A; Lashgari R; Motamedi F
    J Pain; 2010 Jan; 11(1):32-43. PubMed ID: 19632161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of thalamic parafascicular stimulation on the periaqueductal gray and adjacent reticular formation neurons. A possible contribution to pain control mechanisms.
    Sakata S; Shima F; Kato M; Fukui M
    Brain Res; 1988 Jun; 451(1-2):85-96. PubMed ID: 3266959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microinjections of glutamate or morphine at coincident midbrain sites have different effects on nociceptive dorsal horn neurons in the rat.
    Carstens E; Stelzer B; Zimmermann M
    Neurosci Lett; 1988 Dec; 95(1-3):185-91. PubMed ID: 2906415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [C fiber is not necessary in electroacupuncture analgesia, but necessary in diffuse noxious inhibitory controls (DNIC)].
    Bao H; Zhou Z; Yu Y; Han J
    Zhen Ci Yan Jiu; 1991; 16(2):120-4. PubMed ID: 1914132
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffuse noxious inhibitory controls (DNIC) involve trigeminothalamic and spinothalamic neurones in the rat.
    Dickenson AH; Le Bars D
    Exp Brain Res; 1983; 49(2):174-80. PubMed ID: 6832255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation.
    Gerhart KD; Yezierski RP; Wilcox TK; Willis WD
    J Neurophysiol; 1984 Mar; 51(3):450-66. PubMed ID: 6699675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.