These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 2074775)

  • 1. Phosphate transport in established renal epithelial cell lines.
    Biber J; Malmström K; Reshkin S; Murer H
    Methods Enzymol; 1990; 191():494-505. PubMed ID: 2074775
    [No Abstract]   [Full Text] [Related]  

  • 2. In vitro recovery of exocytic transport vesicles from polarized MDCK cells.
    Bennett MK; Wandinger-Ness A; Brändli AW; Simons K
    Methods Enzymol; 1990; 191():813-25. PubMed ID: 2074783
    [No Abstract]   [Full Text] [Related]  

  • 3. Fusion of endocytic vesicles in a cell-free system.
    Woodman PG; Warren G
    Methods Cell Biol; 1989; 31():197-206. PubMed ID: 2674625
    [No Abstract]   [Full Text] [Related]  

  • 4. Calcium transport by intestinal epithelial cell basolateral membrane.
    Walters JR; Weiser MM
    Methods Enzymol; 1990; 192():448-59. PubMed ID: 2074803
    [No Abstract]   [Full Text] [Related]  

  • 5. Calcium-regulated guanylyl cyclases from Paramecium and Tetrahymena.
    Schultz JE; Klumpp S
    Methods Enzymol; 1991; 195():466-74. PubMed ID: 1674578
    [No Abstract]   [Full Text] [Related]  

  • 6. Relationship between renal phosphate reabsorption and renal brush-border membrane transport.
    Kempson SA; Berndt TJ; Turner ST; Zimmerman D; Knox F; Dousa TP
    Am J Physiol; 1983 Feb; 244(2):R216-23. PubMed ID: 6130706
    [No Abstract]   [Full Text] [Related]  

  • 7. Purification and reconstitution of the phosphate transporter from rat liver mitochondria.
    Kaplan RS; Pratt RD; Pedersen PL
    Methods Enzymol; 1989; 173():732-45. PubMed ID: 2550735
    [No Abstract]   [Full Text] [Related]  

  • 8. Established intestinal cell lines as model systems for electrolyte transport studies.
    Dharmsathaphorn K; Madara JL
    Methods Enzymol; 1990; 192():354-89. PubMed ID: 2074798
    [No Abstract]   [Full Text] [Related]  

  • 9. Advantages and disadvantages of studies with vesicles on the cellular mechanisms in epithelial transport.
    Murer H
    Boll Soc Ital Biol Sper; 1984 May; 60 Suppl 4():123-41. PubMed ID: 6380530
    [No Abstract]   [Full Text] [Related]  

  • 10. Uptake of Pi in brush border vesicles after release of unilateral ureteral obstruction.
    Weinreb S; Hruska KA; Klahr S; Hammerman MR
    Am J Physiol; 1982 Jul; 243(1):F29-35. PubMed ID: 7046473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport function and substrate specificity of multidrug resistance protein.
    Keppler D; Jedlitschky G; Leier I
    Methods Enzymol; 1998; 292():607-16. PubMed ID: 9711586
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation of a highly coupled H(+)-transporting ATP synthase from pig heart mitochondria.
    Gautheron DC; Penin F; Deléage G; Godinot C
    Methods Enzymol; 1986; 126():417-27. PubMed ID: 2908455
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP-Pi exchange preparation from Escherichia coli.
    Nelson N; Chibovsky R; Gutnick DL
    Methods Enzymol; 1979; 55():358-63. PubMed ID: 379501
    [No Abstract]   [Full Text] [Related]  

  • 14. Transport of phosphate, D-glucose, and L-valine in newborn rat kidney brush border.
    Lelievre-Pegorier M; Jean T; Ripoche P; Poujeol P
    Am J Physiol; 1983 Sep; 245(3):F367-73. PubMed ID: 6614176
    [No Abstract]   [Full Text] [Related]  

  • 15. Phosphate uptake by a kidney cell line (LLC-PK1).
    Rabito CA
    Am J Physiol; 1983 Jul; 245(1):F22-31. PubMed ID: 6869535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Na-phosphate cotransport in cultured renal epithelial cells: protein-synthesis-dependent and protein-synthesis-independent pathways.
    Murer H; Biber J; Malmström K; Mohrmann I; Coady M
    Adv Exp Med Biol; 1986; 208():73-82. PubMed ID: 3031955
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of confluence on phosphate transport capacity in cultured renal cell lines.
    Scheinman SJ
    J Cell Physiol; 1988 Apr; 135(1):122-6. PubMed ID: 3366788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of glutathione disulfide and glutathione S-conjugates in hepatocyte plasma membrane vesicles.
    Akerboom TP; Sies H
    Methods Enzymol; 1994; 233():416-25. PubMed ID: 8015477
    [No Abstract]   [Full Text] [Related]  

  • 19. Primary culture of isolated tubule cells of defined segmental origin.
    Horster MF; Sone M
    Methods Enzymol; 1990; 191():409-26. PubMed ID: 1963652
    [No Abstract]   [Full Text] [Related]  

  • 20. Adaptive regulation of Na(+)-dependent phosphate transport in the bovine renal epithelial cell line NBL-1. Identification of the phosphate transporter as a 55-kDa glycoprotein.
    Helps CR; McGivan J
    Eur J Biochem; 1991 Sep; 200(3):797-803. PubMed ID: 1915351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.