BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 207509)

  • 61. A reverse-phase HPLC method for cyclic nucleotide phosphodiesterases activity and classification.
    Spoto G; Berardi S; Ajerba G; De Laurentiis V
    Adv Exp Med Biol; 1994; 370():815-20. PubMed ID: 7661030
    [No Abstract]   [Full Text] [Related]  

  • 62. The metabolism of cyclic nucleotides in the guinea-pig pancreas. Cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase.
    Methven P; Lemon M; Bhoola K
    Biochem J; 1980 Feb; 186(2):491-8. PubMed ID: 6246887
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of cyclic nucleotide phosphodiesterases (PDEs) on mitochondrial skeletal muscle functions.
    Tetsi L; Charles AL; Paradis S; Lejay A; Talha S; Geny B; Lugnier C
    Cell Mol Life Sci; 2017 May; 74(10):1883-1893. PubMed ID: 28039524
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cyclic nucleotides and their associated enzymes in 9,10-dimethyl-1,2-benzanthracene-induced mammary tumors of rats.
    Rillema JA; Mulder JA; Anderson LD
    Cancer Res; 1978 Mar; 38(3):741-4. PubMed ID: 23896
    [No Abstract]   [Full Text] [Related]  

  • 65. 3':5'-cyclic-nucleotide phosphodiesterase in the bovine pituitary gland.
    Nagasaka A; Ohkubo S; Hidaka H
    Biochim Biophys Acta; 1983 Feb; 755(3):481-7. PubMed ID: 6297613
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Effect of several hormones on cyclic 3',5'-nucleotide phosphodiesterase in rat kidneys].
    Iwase K
    Nihon Naibunpi Gakkai Zasshi; 1983 Oct; 59(10):1678-91. PubMed ID: 6319206
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cyclic nucleotides and cyclic nucleotide phosphodiesterase during development of Polysphondylium violaceum.
    Hanna MH; Klein C; Cox E
    Exp Cell Res; 1979 Sep; 122(2):265-71. PubMed ID: 228950
    [No Abstract]   [Full Text] [Related]  

  • 68. Role of phosphodiesterases III and IV in the modulation of vascular cyclic AMP content by the NO/cyclic GMP pathway.
    Eckly AE; Lugnier C
    Br J Pharmacol; 1994 Oct; 113(2):445-50. PubMed ID: 7834194
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Zinc deficiency decreases the activity of calmodulin regulated cyclic nucleotide phosphodiesterases in vivo in selected rat tissues.
    Law JS; McBride SA; Graham S; Nelson NR; Slotnick BM; Henkin RI
    Biol Trace Elem Res; 1988 Aug; 16(3):221-6. PubMed ID: 2484550
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Analysis of phosphodiesterase reaction mixtures by high-performance liquid chromatography.
    Watterson DM; Lukas TJ
    Methods Enzymol; 1988; 159():471-7. PubMed ID: 2842612
    [No Abstract]   [Full Text] [Related]  

  • 71. Changes in phosphodiesterase activity in the developing rat submandibular gland.
    Tanaka S; Shimooka S; Shimomura H
    Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effects of follicle stimulating hormone and luteinizing hormone upon cyclic AMP and cyclic GMP levels in rat ovaries in vitro.
    Ratner A
    Endocrinology; 1976 Dec; 99(6):1496-500. PubMed ID: 187411
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of cyclic nucleotide phosphodiesterase isozymes in intact canine trachealis.
    Torphy TJ; Zhou HL; Burman M; Huang LB
    Mol Pharmacol; 1991 Mar; 39(3):376-84. PubMed ID: 1848659
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cyclic nucleotides in pathophysiology.
    Hamet P; Tremblay J; Pang SC
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():651-9. PubMed ID: 6328945
    [No Abstract]   [Full Text] [Related]  

  • 75. Increased expression of the cGMP-inhibited cAMP-specific (PDE3) and cGMP binding cGMP-specific (PDE5) phosphodiesterases in models of pulmonary hypertension.
    Murray F; MacLean MR; Pyne NJ
    Br J Pharmacol; 2002 Dec; 137(8):1187-94. PubMed ID: 12466227
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig.
    Johnson WB; Katugampola S; Able S; Napier C; Harding SE
    Life Sci; 2012 Feb; 90(9-10):328-36. PubMed ID: 22261303
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The effects of follicle-stimulating hormone and cyclic guanosine 3',5'-monophosphate on cyclic adenosine 3',5'-monophosphate-phosphodiesterase and resumption of meiosis in hamster cumulus-oocyte complexes.
    Hubbard CJ; Price J
    Biol Reprod; 1988 Nov; 39(4):829-38. PubMed ID: 2850023
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation by a beta-adrenergic receptor of a Ca2+-independent adenosine 3',5'-(cyclic)monophosphate phosphodiesterase in C6 glioma cells.
    Onali P; Schwartz JP; Hanbauer I; Costa E
    Biochim Biophys Acta; 1981 Jul; 675(2):285-92. PubMed ID: 6268187
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cyclic nucleotide phosphodiesterase. Insulin activation detected in adipose tissue by gel electrophoresis.
    Solomon SS; Palazzolo M; King LE
    Diabetes; 1977 Oct; 26(10):967-72. PubMed ID: 198322
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of cyclic nucleotide phosphodiesterases in ischemic preconditioning.
    Lochner A; Genade S; Tromp E; Opie L; Moolman J; Thomas S; Podzuweit T
    Mol Cell Biochem; 1998 Sep; 186(1-2):169-75. PubMed ID: 9774198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.