These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 207563)

  • 1. [Effect of cyclic adenosine monophosphate and guanosine monophosphate on the aggregation and nucleotide metabolism of the blood platelets].
    Nikulin AA
    Farmakol Toksikol; 1978; 41(2):177-82. PubMed ID: 207563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of calcium, thrombin and nucleotides (ADP, cAMP, cGMP) on blood platelet glycolysis and energy metabolism].
    Nikulin AA
    Farmakol Toksikol; 1980; 43(5):585-90. PubMed ID: 6256208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of aggregation inducers and inhibitors on the pentosephosphate pathway enzymes of glucose conversion in the thrombocytes].
    Nikulin AA; Aksenova VM; Petrovich IuA
    Farmakol Toksikol; 1979; 42(3):254-7. PubMed ID: 221244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic 3',5'-adenosine monophosphate in human blood platelets. II. Effect of N6-2'-o-dibutyryl cyclic 3',5'-adenosine monophosphate on platelet function.
    Salzman EW; Levine L
    J Clin Invest; 1971 Jan; 50(1):131-41. PubMed ID: 4322665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mepacrine-induced elevation of cyclic GMP levels and acceleration of reversal of ADP-induced aggregation in washed rabbit platelets.
    Matsuoka I; Suzuki T
    J Cyclic Nucleotide Protein Phosphor Res; 1983; 9(4-5):341-53. PubMed ID: 6147364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of mitomycin C on platelet aggregation and adenosine 3',5'-monophosphate metabolism.
    Hashimoto S; Shibata S; Kobayashi B
    Thromb Haemost; 1978 Feb; 39(1):177-85. PubMed ID: 205972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP.
    Maurice DH; Haslam RJ
    Mol Pharmacol; 1990 May; 37(5):671-81. PubMed ID: 2160060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of cyclic 3',5'-guanosine monophosphate on human platelet function.
    Chiang TM; Dixit SN; Kang AH
    J Lab Clin Med; 1976 Aug; 88(2):215-21. PubMed ID: 182889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of adenyl-cyclase activators, phosphodiesterase inhibitors and pyridoxal-5-phosphate on platelet aggregation and adenosine-3'-5'-cyclic monophosphate accumulation.
    Zahavi M; Zahavi J; Kakkar VV
    Thromb Haemost; 1984 Oct; 52(2):205-9. PubMed ID: 6098048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect on platelet functions of derivatives of cyclic nucleotides.
    Pareti FI; Carrera D; Mannucci L; Mannucci PM
    Thromb Haemost; 1978 Apr; 39(2):404-10. PubMed ID: 209573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro effect of a thymic epithelial culture supernate or thymosin fraction 5 on rabbit platelet aggregation and intracellular cyclic AMP levels.
    Hashimoto S; Itoh Y; Kawaguchi A; Mizuno Y; Muraoka M; Tsuchiya M
    J Cell Physiol; 1987 Dec; 133(3):499-506. PubMed ID: 2826498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 1-(3-chloroanilino)-4-phenylphthalazine (MY-5445), a specific inhibitor of cyclic GMP phosphodiesterase, on human platelet aggregation.
    Hagiwara M; Endo T; Kanayama T; Hidaka H
    J Pharmacol Exp Ther; 1984 Feb; 228(2):467-71. PubMed ID: 6141286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional pool of cyclic adenosine 3',5'-monophosphate in rabbit platelets.
    Hashimoto S
    Thromb Haemost; 1983 Feb; 49(1):8-12. PubMed ID: 6302940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proceedings: New synthetic derivatives of natural cyclic nucleotides: their effect on platelet behaviour.
    Pareti FI; Mannucci L; Carrera D; Mannucci PM
    Thromb Diath Haemorrh; 1975 Sep; 34(1):335-6. PubMed ID: 171795
    [No Abstract]   [Full Text] [Related]  

  • 15. Regulation of protease-activated receptor (PAR) 1 and PAR4 signaling in human platelets by compartmentalized cyclic nucleotide actions.
    Bilodeau ML; Hamm HE
    J Pharmacol Exp Ther; 2007 Aug; 322(2):778-88. PubMed ID: 17525299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective inhibitor of platelet cyclic adenosine monophosphate phosphodiesterase, cilostamide, inhibits platelet aggregation.
    Hidaka H; Hayashi H; Kohri H; Kimura Y; Hosokawa T; Igawa T; Saitoh Y
    J Pharmacol Exp Ther; 1979 Oct; 211(1):26-30. PubMed ID: 226672
    [No Abstract]   [Full Text] [Related]  

  • 17. Influence of beta 2-glycoprotein-I upon the content of cAMP and cGMP in human blood platelets.
    Nimpf J; Gries A; Wurm H; Kostner GM
    Thromb Haemost; 1985 Dec; 54(4):824-7. PubMed ID: 3003956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition and subsequent enhancement of platelet responsiveness by prostacyclin in the rabbit. Relationship to platelet adenosine 3',5'-cyclic monophosphate.
    Vanderwel M; Haslam RJ
    J Clin Invest; 1985 Jul; 76(1):233-40. PubMed ID: 2991338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-talk between adenosine and the oxatriazole derivative GEA 3175 in platelets.
    Asplund Persson A; Zalavary S; Lindström E; Whiss PA; Bengtsson T; GrenegÄrd M
    Eur J Pharmacol; 2005 Jul; 517(3):149-57. PubMed ID: 15963495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High glucose rapidly activates the nitric oxide/cyclic nucleotide pathway in human platelets via an osmotic mechanism.
    Massucco P; Mattiello L; Russo I; Traversa M; Doronzo G; Anfossi G; Trovati M
    Thromb Haemost; 2005 Mar; 93(3):517-26. PubMed ID: 15735804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.