BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 2075979)

  • 1. Characterization of mutant glucose dehydrogenases with increasing stability.
    Yamamoto K; Nagao T; Makino Y; Urabe I; Okada H
    Ann N Y Acad Sci; 1990; 613():362-5. PubMed ID: 2075979
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular engineering of PQQGDH and its applications.
    Igarashi S; Okuda J; Ikebukuro K; Sode K
    Arch Biochem Biophys; 2004 Aug; 428(1):52-63. PubMed ID: 15234269
    [No Abstract]   [Full Text] [Related]  

  • 3. Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution.
    Hamamatsu N; Suzumura A; Nomiya Y; Sato M; Aita T; Nakajima M; Husimi Y; Shibanaka Y
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):607-17. PubMed ID: 16944137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the membrane quinoprotein glucose dehydrogenase from Escherichia coli and characterization of a site-directed mutant in which histidine-262 has been changed to tyrosine.
    Cozier GE; Salleh RA; Anthony C
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):639-47. PubMed ID: 10359647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of thermostable glucose dehydrogenases from thermophilic filamentous fungi.
    Ozawa K; Iwasa H; Sasaki N; Kinoshita N; Hiratsuka A; Yokoyama K
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):173-183. PubMed ID: 27510979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of the quinoprotein glucose dehydrogenase of Escherichia coli; the role of His262 in PQQ binding and determination of substrate specificity.
    Cozier GE; Salleh RA; Anthony C
    Biochem Soc Trans; 1998 Aug; 26(3):S270. PubMed ID: 9765989
    [No Abstract]   [Full Text] [Related]  

  • 7. Significantly enhanced stability of glucose dehydrogenase by directed evolution.
    Baik SH; Ide T; Yoshida H; Kagami O; Harayama S
    Appl Microbiol Biotechnol; 2003 May; 61(4):329-35. PubMed ID: 12743762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state.
    Baik SH; Michel F; Aghajari N; Haser R; Harayama S
    Appl Environ Microbiol; 2005 Jun; 71(6):3285-93. PubMed ID: 15933031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and characterization of mutant water-soluble PQQ glucose dehydrogenases with altered K(m) values--site-directed mutagenesis studies on the putative active site.
    Igarashi S; Ohtera T; Yoshida H; Witarto AB; Sode K
    Biochem Biophys Res Commun; 1999 Nov; 264(3):820-4. PubMed ID: 10544015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of quaternary structure of water-soluble quinoprotein glucose dehydrogenase.
    Igarashi S; Sode K
    Mol Biotechnol; 2003 Jun; 24(2):97-104. PubMed ID: 12746550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability-increasing mutants of glucose dehydrogenase.
    Nagao T; Makino Y; Yamamoto K; Urabe I; Okada H
    FEBS Lett; 1989 Aug; 253(1-2):113-6. PubMed ID: 2503396
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of the weak Ca(2+)-binding site of subtilisin J by site-directed mutagenesis on heat stability.
    Jang JS; Bae KH; Byun SM
    Biochem Biophys Res Commun; 1992 Oct; 188(1):184-9. PubMed ID: 1358066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostable chimeric PQQ glucose dehydrogenase.
    Sode K; Watanabe K; Ito S; Matsumura K; Kikuchi T
    FEBS Lett; 1995 May; 364(3):325-7. PubMed ID: 7758590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering kinetic mechanism and enzyme stability by mutagenesis of the dimer interface of glutathione reductase.
    Bashir A; Perham RN; Scrutton NS; Berry A
    Biochem J; 1995 Dec; 312 ( Pt 2)(Pt 2):527-33. PubMed ID: 8526866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering PQQ glucose dehydrogenase with improved substrate specificity. Site-directed mutagenesis studies on the active center of PQQ glucose dehydrogenase.
    Igarashi S; Hirokawa T; Sode K
    Biomol Eng; 2004 Apr; 21(2):81-9. PubMed ID: 15113562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the gcd gene from Escherichia coli K-12 W3110 and regulation of its expression.
    Yamada M; Asaoka S; Saier MH; Yamada Y
    J Bacteriol; 1993 Jan; 175(2):568-71. PubMed ID: 8419307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of thermal stability of subtilisin J by changing the primary autolysis site.
    Bae KH; Jang JS; Park KS; Lee SH; Byun SM
    Biochem Biophys Res Commun; 1995 Feb; 207(1):20-4. PubMed ID: 7857265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the low-temperature activity of Sulfolobus tokodaii glucose-1-dehydrogenase mutants.
    Sugii T; Akanuma S; Yagi S; Yagyu K; Shimoda Y; Yamagishi A
    J Biosci Bioeng; 2014 Oct; 118(4):367-71. PubMed ID: 24742629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and site-specific immobilization of genetically engineered glucose dehydrogenase on thiopropyl-Sepharose.
    Persson M; Bülow L; Mosbach K
    FEBS Lett; 1990 Sep; 270(1-2):41-4. PubMed ID: 2226786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.