These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2076462)

  • 1. MacProMass: a computer program to correlate mass spectral data to peptide and protein structures.
    Lee TD; Vemuri S
    Biomed Environ Mass Spectrom; 1990 Nov; 19(11):639-45. PubMed ID: 2076462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the primary structure of peptides using fast atom bombardment mass spectrometry.
    Zidarov D; Thibault P; Evans MJ; Bertrand MJ
    Biomed Environ Mass Spectrom; 1990 Jan; 19(1):13-26. PubMed ID: 2306546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated interpretation of high-energy collision-induced dissociation spectra of singly protonated peptides by 'SeqMS', a software aid for de novo sequencing by tandem mass spectrometry.
    Fernandez-de-Cossio J; Gonzalez J; Betancourt L; Besada V; Padron G; Shimonishi Y; Takao T
    Rapid Commun Mass Spectrom; 1998; 12(23):1867-78. PubMed ID: 9842738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence analysis of peptide mixtures by automated integration of Edman and mass spectrometric data.
    Johnson RS; Walsh KA
    Protein Sci; 1992 Sep; 1(9):1083-91. PubMed ID: 1304388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of plasma desorption mass spectrometry in peptide and protein chemistry.
    Roepstorff P; Nielsen PF; Klarskov K; Højrup P
    Biomed Environ Mass Spectrom; 1988 Oct; 16(1-12):9-18. PubMed ID: 3242713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mass spectrometry in mapping strain variation and post-translational modifications of viral proteins.
    Gorman JJ; Corino GL; Shiell BJ
    Biomed Environ Mass Spectrom; 1990 Nov; 19(11):646-54. PubMed ID: 2076463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of interchain crosslinkages in insulin B-chain dimers by fast atom bombardment mass spectrometry.
    Toren P; Smith D; Chance R; Hoffman J
    Anal Biochem; 1988 Mar; 169(2):287-99. PubMed ID: 3289414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical methods for differentiating minor sequence variations in related peptides.
    Grieve PA; Jones A; Alewood PF
    J Chromatogr; 1993 Aug; 646(1):175-84. PubMed ID: 8408426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative protein sequencing using mass spectrometry: computer-aided assembly of protein sequences from N-terminal peptide sequences.
    Cannon EL; Lovins RE
    Anal Biochem; 1972 Mar; 46(1):33-44. PubMed ID: 5062880
    [No Abstract]   [Full Text] [Related]  

  • 10. The amino-acid sequence of isoinhibitor K form snails (Helix pomatia). A sequence determination by automated Edman degradation and mass-spectral identification of the phenylthiohydantoins.
    Tschesche H; Dietl T
    Eur J Biochem; 1975 Oct; 58(2):439-51. PubMed ID: 1183446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein N-terminal analysis using fast atom bombardment mass spectrometry.
    Beckner CF; Caprioli RM
    Anal Biochem; 1983 Apr; 130(2):328-33. PubMed ID: 6869820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoresis-mass spectrometry of peptides from enzymatic protein hydrolysis: simulation and optimization.
    Simó C; Cifuentes A
    Electrophoresis; 2003 Mar; 24(5):834-42. PubMed ID: 12627445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing of peptide mixtures by Edman degradation and field-desorption mass spectrometry.
    Shimonishi Y; Hong YM; Kitagishi T; Matsuo T; Matsuda H; Katakuse I
    Eur J Biochem; 1980 Nov; 112(2):251-64. PubMed ID: 7460922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved motifs as the basis for recognition of homologous proteins across species boundaries using peptide-mass fingerprinting.
    Cordwell SJ; Wasinger VC; Cerpa-Poljak A; Duncan MW; Humphery-Smith I
    J Mass Spectrom; 1997 Apr; 32(4):370-8. PubMed ID: 9130395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective cleavage of proteins.
    Waxdal MJ
    J Agric Food Chem; 1971; 19(4):632-7. PubMed ID: 5163843
    [No Abstract]   [Full Text] [Related]  

  • 16. Sequence database searches via de novo peptide sequencing by tandem mass spectrometry.
    Taylor JA; Johnson RS
    Rapid Commun Mass Spectrom; 1997; 11(9):1067-75. PubMed ID: 9204580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of c1 fragment ions in collision-induced dissociation of glutamine-containing peptide ions: a tip for de novo sequencing.
    Lee YJ; Lee YM
    Rapid Commun Mass Spectrom; 2004; 18(18):2069-76. PubMed ID: 15378720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Amino acid sequence in tryptic peptides of maleylated Micrococcus sp. n. histidine decarboxylase beta-polypeptide chain].
    Alekseeva AE; Prozorovskii VN; Grebenshchikova OG
    Biokhimiia; 1976 Oct; 41(10):1760-5. PubMed ID: 1024578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete amino acid sequence of the sweet protein monellin.
    Kohmura M; Nio N; Ariyoshi Y
    Agric Biol Chem; 1990 Sep; 54(9):2219-24. PubMed ID: 1368575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry.
    Arnott D; Henzel WJ; Stults JT
    Electrophoresis; 1998 May; 19(6):968-80. PubMed ID: 9638943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.