These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2077009)

  • 1. Hemodynamic effects of synchronous high-frequency jet ventilation in mitral regurgitation.
    Stein KL; Kramer DJ; Killian A; Pinsky MR
    J Appl Physiol (1985); 1990 Dec; 69(6):2120-5. PubMed ID: 2077009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure.
    Pinsky MR; Matuschak GM; Bernardi L; Klain M
    J Appl Physiol (1985); 1986 Feb; 60(2):604-12. PubMed ID: 3512512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic effects of synchronous high-frequency jet ventilation during acute hypovolemia.
    Matuschak GM; Pinsky MR; Klain M
    J Appl Physiol (1985); 1986 Jul; 61(1):44-53. PubMed ID: 3525505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of synchronous increase in intrathoracic pressure on cardiac performance during acute endotoxemia.
    Guimond JG; Pinsky MR; Matuschak GM
    J Appl Physiol (1985); 1990 Oct; 69(4):1502-8. PubMed ID: 1979788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transesophageal echocardiographic assessment of pulmonary arterial and venous flow during high-frequency jet ventilation.
    Kawahito S; Kitahata H; Tanaka K; Nozaki J; Oshita S
    J Clin Anesth; 2000 Jun; 12(4):308-14. PubMed ID: 10960204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure.
    Pinsky MR; Marquez J; Martin D; Klain M
    Chest; 1987 May; 91(5):709-15. PubMed ID: 3552466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic aspects of acute mitral regurgitation: effects of ventricular volume, pressure and contractility on the effective regurgitant orifice area.
    Yoran C; Yellin EL; Becker RM; Gabbay S; Frater RW; Sonnenblick EH
    Circulation; 1979 Jul; 60(1):170-6. PubMed ID: 445720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of cardiac augmentation by elevations in intrathoracic pressure.
    Pinsky MR; Matuschak GM; Klain M
    J Appl Physiol (1985); 1985 Apr; 58(4):1189-98. PubMed ID: 3988674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of heart rate on experimentally produced mitral regurgitation in dogs.
    Yoran C; Yellin EL; Hori M; Tsujioka K; Laniado S; Sonnenblick EH; Frater RW
    Am J Cardiol; 1983 Dec; 52(10):1345-9. PubMed ID: 6650422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic effects of high frequency jet ventilation during acute hypovolemia.
    Wei HF; Jin SA; Bi HS; Ba XY
    J Tongji Med Univ; 1991; 11(3):174-81. PubMed ID: 1784048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of tidal ventilation and high-frequency jet ventilation before and after cardiopulmonary bypass in dogs using two-dimensional transesophageal echocardiography.
    Hayes JK; Smith KW; Port JD; Jordan WS
    J Cardiothorac Vasc Anesth; 1991 Aug; 5(4):320-6. PubMed ID: 1873510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High frequency jet ventilation: the influence of gas flow, inspiration time and ventilatory frequency on gas transport in healthy anaesthetized dogs.
    Spoelstra AJ; Tamsma TJ
    Br J Anaesth; 1987 Oct; 59(10):1298-308. PubMed ID: 3118928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A re-evaluation of the hemodynamic consequences of intermittent positive pressure ventilation.
    Robotham JL; Cherry D; Mitzner W; Rabson JL; Lixfeld W; Bromberger-Barnea B
    Crit Care Med; 1983 Oct; 11(10):783-93. PubMed ID: 6352172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic effects of high-frequency jet ventilation.
    Otto CW; Quan SF; Conahan TJ; Calkins JM; Waterson CK; Hameroff SR
    Anesth Analg; 1983 Mar; 62(3):298-304. PubMed ID: 6338759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of left ventricular load and contractility on mitral regurgitant orifice size and flow in the dog.
    Borgenhagen DM; Serur JR; Gorlin R; Adams D; Sonnenblick EH
    Circulation; 1977 Jul; 56(1):106-13. PubMed ID: 862151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute and chronic reduction of functional mitral regurgitation in experimental heart failure by percutaneous mitral annuloplasty.
    Maniu CV; Patel JB; Reuter DG; Meyer DM; Edwards WD; Rihal CS; Redfield MM
    J Am Coll Cardiol; 2004 Oct; 44(8):1652-61. PubMed ID: 15489099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency jet ventilation: utility in posterior left atrial catheter ablation.
    Goode JS; Taylor RL; Buffington CW; Klain MM; Schwartzman D
    Heart Rhythm; 2006 Jan; 3(1):13-9. PubMed ID: 16399046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemodynamic effects of high-frequency jet ventilation in dogs with acute right coronary arterial ligation and pulmonary arterial banding.
    Ushijima K; Oka Y; Weinberg P; Kitahata H; Yellin EL; Goldiner PL
    J Anesth; 1990 Jul; 4(3):232-41. PubMed ID: 15235979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental mitral regurgitation. Physiological effects of correction on left ventricular dynamics.
    Spratt JA; Olsen CO; Tyson GS; Glower DD; Davis JW; Rankin JS
    J Thorac Cardiovasc Surg; 1983 Oct; 86(4):479-89. PubMed ID: 6621079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic effects of 1:2 ECG-coupled jet ventilation in the dog. A comparison with other modes.
    Schulman DS; Biondi JW; Bell L; Rutlen DL
    Am Rev Respir Dis; 1991 Oct; 144(4):819-25. PubMed ID: 1928955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.