BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

671 related articles for article (PubMed ID: 2077052)

  • 1. Further study of the outward displacement of retinal ganglion cells during optic nerve regeneration, with a note on the normal cells of Dogiel in the adult frog.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Nov; 301(1):80-92. PubMed ID: 2077052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog. II. Cell survival and functional recovery after optic nerve transection.
    Singman EL; Scalia F
    J Comp Neurol; 1991 May; 307(3):351-69. PubMed ID: 1856327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative study of the tectally projecting retinal ganglion cells in the adult frog: I. The size of the contralateral and ipsilateral projections.
    Singman EL; Scalia F
    J Comp Neurol; 1990 Dec; 302(4):792-809. PubMed ID: 1707068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative analysis of frog optic nerve regeneration: is retrograde ganglion cell death or collateral axonal loss related to selective reinnervation?
    Stelzner DJ; Strauss JA
    J Comp Neurol; 1986 Mar; 245(1):83-106. PubMed ID: 3485663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The superficial plexiform layer: a third retinal association area.
    Wieniawa-Narkiewicz E; Hughes A
    J Comp Neurol; 1992 Oct; 324(4):463-84. PubMed ID: 1430334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aberrant retino-retinal projection during optic nerve regeneration in the frog. I. Time course of formation and cells of origin.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):605-20. PubMed ID: 6970756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal ganglion cell death during optic nerve regeneration in the frog Hyla moorei.
    Humphrey MF; Beazley LD
    J Comp Neurol; 1985 Jun; 236(3):382-402. PubMed ID: 2414337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE; Scalia F
    J Comp Neurol; 1981 Oct; 202(1):135-55. PubMed ID: 6974743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histochemical localization of cytochrome oxidase in the retina and optic tectum of normal goldfish: a combined cytochrome oxidase-horseradish peroxidase study.
    Kageyama GH; Meyer RL
    J Comp Neurol; 1988 Apr; 270(3):354-71. PubMed ID: 2836476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH-diaphorase neurons in the retina of the hamster.
    Lau KC; So KF; Tay D; Leung MC
    J Comp Neurol; 1994 Dec; 350(4):550-8. PubMed ID: 7534316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of regenerated retinotectal axons in goldfish. I. Optic nerve, tract and tectal fascicle layer.
    Stuermer CA
    J Embryol Exp Morphol; 1986 Apr; 93():1-28. PubMed ID: 3734679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus.
    Ito H; Murakami T
    J Comp Neurol; 1984 Oct; 229(1):80-96. PubMed ID: 6490977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different optic nerve lesions on retinal ganglion cell death in the frog Rana pipiens.
    Humphrey MF
    J Comp Neurol; 1987 Dec; 266(2):209-19. PubMed ID: 3501791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of target tissue in regulating the development of retinal ganglion cells in the albino rat: effects of kainate lesions in the superior colliculus.
    Carpenter P; Sefton AJ; Dreher B; Lim WL
    J Comp Neurol; 1986 Sep; 251(2):240-59. PubMed ID: 3782500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The aberrant retino-retinal projection during optic nerve regeneration in the frog. III. Effects of crushing both nerves.
    Bohn RC; Stelzner DJ
    J Comp Neurol; 1981 Mar; 196(4):633-43. PubMed ID: 6970758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss and displacement of ganglion cells after optic nerve regeneration in adult Rana pipiens.
    Scalia F; Arango V; Singman EL
    Brain Res; 1985 Oct; 344(2):267-80. PubMed ID: 3876140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of optic nerve regeneration in the frog Hyla moorei transiently delays the death of some ganglion cells.
    Humphrey MF; Darby JE; Beazley LD
    J Comp Neurol; 1989 Jan; 279(2):187-98. PubMed ID: 2913065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in brain-derived neurotrophic factor and trkB receptor in the adult Rana pipiens retina and optic tectum after optic nerve injury.
    Duprey-Díaz MV; Soto I; Blagburn JM; Blanco RE
    J Comp Neurol; 2002 Dec; 454(4):456-69. PubMed ID: 12455009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.