BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 2078437)

  • 1. Comparison of the effect of gluconate, lactose, and xylitol on bone recalcification in calcium-deficient rats.
    Hämäläinen MM; Knuuttila M; Svanberg M; Koskinen T
    Bone; 1990; 11(6):429-38. PubMed ID: 2078437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Citric acid concentration compared to serum parathyroid hormone, 1,25(OH)2D3 and calcitonin during dietary Ca deficiency and rehabilitation enhanced with xylitol in rats.
    Svanberg M; Knuuttila M; Hämäläinen M
    Miner Electrolyte Metab; 1993; 19(2):103-8. PubMed ID: 8377724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone repair in calcium-deficient rats: comparison of xylitol+calcium carbonate with calcium carbonate, calcium lactate and calcium citrate on the repletion of calcium.
    Hämäläinen MM
    J Nutr; 1994 Jun; 124(6):874-81. PubMed ID: 8207545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone turnover in rats treated with 1,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 or 24,25-dihydroxyvitamin D3.
    Mortensen BM; Gautvik KM; Gordeladze JO
    Biosci Rep; 1993 Feb; 13(1):27-39. PubMed ID: 8392394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of dietary xylitol on recalcifying and newly formed cortical long bone in rats.
    Svanberg M; Knuuttila M
    Calcif Tissue Int; 1993 Aug; 53(2):135-8. PubMed ID: 8402322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human parathyroid hormone (1-34) and salmon calcitonin do not reverse impaired mineralization produced by high doses of 1,25 dihydroxyvitamin D3.
    Gunness-Hey M; Hock JM; Gera I; Fonseca J; Poser J; Bevan J; Raisz LG
    Calcif Tissue Int; 1986 Apr; 38(4):234-8. PubMed ID: 3085902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of duration of alcohol consumption on calcium and bone metabolism during pregnancy in the rat.
    Keiver K; Weinberg J
    Alcohol Clin Exp Res; 2003 Sep; 27(9):1507-19. PubMed ID: 14506413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dietary lactose on salt-mediated changes in mineral metabolism and bone composition in the rat.
    Shortt C; Flynn A
    Br J Nutr; 1991 Jul; 66(1):73-81. PubMed ID: 1931908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral metabolism in obese children.
    Zamboni G; Soffiati M; Giavarina D; Tató L
    Acta Paediatr Scand; 1988 Sep; 77(5):741-6. PubMed ID: 2849283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dietary xylitol protects against the imbalance in bone metabolism during the early phase of collagen type II-induced arthritis in dark agouti rats.
    Kaivosoja SM; Mattila PT; Knuuttila ML
    Metabolism; 2008 Aug; 57(8):1052-5. PubMed ID: 18640381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1,25 Dihydroxyvitamin D3 modifies cyclosporine-induced bone loss.
    Epstein S; Schlosberg M; Fallon M; Thomas S; Movsowitz C; Ismail F
    Calcif Tissue Int; 1990 Sep; 47(3):152-7. PubMed ID: 2224590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations in serum and urine parameters reflecting bone turnover in uremic patients during treatment with 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3.
    Mortensen BM; Gordeladze JO; Lyngdal PT; Aarseth HP; Gautvik KM
    Miner Electrolyte Metab; 1993; 19(2):78-85. PubMed ID: 8377728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of vitamin K2 (menatetrenone) and alendronate on bone mineral density and bone strength in rats fed a low-magnesium diet.
    Kobayashi M; Hara K; Akiyama Y
    Bone; 2004 Nov; 35(5):1136-43. PubMed ID: 15542039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorpromazine alters bone metabolism of rats in vivo.
    Komoda T; Nagata A; Kiyoki M; Miura M; Koyama I; Sakagishi Y; Kumegawa M
    Calcif Tissue Int; 1988 Jan; 42(1):58-62. PubMed ID: 2834031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the usefulness of serum phosphatases and osteocalcin as serum markers in a calcium depletion-repletion rat model.
    Tanimoto H; Lau KH; Nishimoto SK; Wergedal JE; Baylink DJ
    Calcif Tissue Int; 1991 Feb; 48(2):101-10. PubMed ID: 1849444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of oral xylitol administration on bone density in rat femur.
    Sato H; Ide Y; Nasu M; Numabe Y
    Odontology; 2011 Jan; 99(1):28-33. PubMed ID: 21271323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term effects of intravenous 1 alpha (OH)D3 combined with CaCO3 and low-calcium dialysis on secondary hyperparathyroidism and biochemical bone markers in patients on chronic hemodialysis.
    Brandi L; Daugaard H; Nielsen PK; Jensen LT; Egsmose C; Olgaard K
    Nephron; 1996; 74(1):89-103. PubMed ID: 8883025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dietary calcium on serum BGP (osteocalcin).
    Kusuhara R; Katayama S; Itabashi A; Maruno Y; Inaba M; Akabane S; Tanaka K; Morita K; Shibuya M; Kawazu S
    Endocrinol Jpn; 1991 Apr; 38(2):145-9. PubMed ID: 1752232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vitamin D3, lactose, and xylitol stimulate chromaffin cell proliferation in the rat adrenal medulla.
    Tischler AS; Powers JF; Downing JC; Riseberg JC; Shahsavari M; Ziar J; McClain RM
    Toxicol Appl Pharmacol; 1996 Sep; 140(1):115-23. PubMed ID: 8806877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dietary calcium supplementation with lactose on bone in vitamin D-deficient rats.
    Schaafsma G; Visser WJ; Dekker PR; Van Schaik M
    Bone; 1987; 8(6):357-62. PubMed ID: 3449111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.