These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 20785906)
1. Drying Penicillin by Sublimation. Flosdorf EW Br Med J; 1945 Feb; 1(4389):216-8. PubMed ID: 20785906 [No Abstract] [Full Text] [Related]
2. Micro-computed tomography observation of sublimation interface and image analysis on sublimation process during freeze-drying. Xiao X; Tao LR; Hua TC Cryo Letters; 2007; 28(4):253-60. PubMed ID: 17962829 [TBL] [Abstract][Full Text] [Related]
3. Multi-Point Wireless Temperature Sensing System for Monitoring Pharmaceutical Lyophilization. Jiang X; Zhu T; Kodama T; Raghunathan N; Alexeenko A; Peroulis D Front Chem; 2018; 6():288. PubMed ID: 30065924 [TBL] [Abstract][Full Text] [Related]
4. Process control in freeze drying: determination of the end point of sublimation drying by an electronic moisture sensor. Roy ML; Pikal MJ J Parenter Sci Technol; 1989; 43(2):60-6. PubMed ID: 2709237 [TBL] [Abstract][Full Text] [Related]
5. Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique. Xiang J; Hey JM; Liedtke V; Wang DQ Int J Pharm; 2004 Jul; 279(1-2):95-105. PubMed ID: 15234798 [TBL] [Abstract][Full Text] [Related]
6. Statistical evaluation of vial design features that influence sublimation rates during primary drying. Cannon A; Shemeley K Pharm Res; 2004 Mar; 21(3):536-42. PubMed ID: 15070106 [TBL] [Abstract][Full Text] [Related]
7. Temperature Measurement by Sublimation Rate as a Process Analytical Technology Tool in Lyophilization. Kawasaki H; Shimanouchi T; Sawada H; Hosomi H; Hamabe Y; Kimura Y J Pharm Sci; 2019 Jul; 108(7):2305-2314. PubMed ID: 30825460 [TBL] [Abstract][Full Text] [Related]
8. Sublimation of formaldehyde in freeze-drying. Altieri PL; Berman S; Lowenthal JP Dev Biol Stand; 1976 Oct; 36():231-6. PubMed ID: 1030423 [TBL] [Abstract][Full Text] [Related]
9. Physical chemistry of freeze-drying: measurement of sublimation rates for frozen aqueous solutions by a microbalance technique. Pikal MJ; Shah S; Senior D; Lang JE J Pharm Sci; 1983 Jun; 72(6):635-50. PubMed ID: 6875825 [TBL] [Abstract][Full Text] [Related]
10. Development of an efficient single-step freeze-drying cycle for protein formulations. Chang BS; Fischer NL Pharm Res; 1995 Jun; 12(6):831-7. PubMed ID: 7667186 [TBL] [Abstract][Full Text] [Related]
11. The effects on biological materials of freezing and drying by vacuum sublimation. I. Development and testing of apparatus. GREIFF D; PINKERTON H J Exp Med; 1954 Jul; 100(1):81-8. PubMed ID: 13163340 [TBL] [Abstract][Full Text] [Related]
12. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy. Jeeraruangrattana Y; Smith G; Polygalov E; Ermolina I Eur J Pharm Biopharm; 2020 Jul; 152():144-163. PubMed ID: 32353532 [TBL] [Abstract][Full Text] [Related]
13. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products. Hottot A; Vessot S; Andrieu J PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546 [TBL] [Abstract][Full Text] [Related]
14. Preparation of excipient-free recombinant human tissue-type plasminogen activator by lyophilization from ammonium bicarbonate solution: an investigation of the two-stage sublimation phenomenon. Overcashier DE; Brooks DA; Costantino HR; Hsu CC J Pharm Sci; 1997 Apr; 86(4):455-9. PubMed ID: 9109048 [TBL] [Abstract][Full Text] [Related]
15. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying. Oesterle J; Franks F; Auffret T Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754 [TBL] [Abstract][Full Text] [Related]
16. [The influence of the drying method for food properties and hypolidemic potential of oyster mushrooms Piskov SI; Timchenko LD; Rzhepakovsky IV; Avanesyan SS; Sizonenko MN; Areshidze DA; Kovalev DA Vopr Pitan; 2018; 87(2):65-76. PubMed ID: 30592870 [TBL] [Abstract][Full Text] [Related]
17. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C Adv Food Nutr Res; 2020; 93():1-58. PubMed ID: 32711860 [TBL] [Abstract][Full Text] [Related]
18. Freeze-drying in protective bags: Characterization of heat and mass transfer. Chamberlain R; Schlauersbach J; Erber M Eur J Pharm Biopharm; 2020 Sep; 154():309-316. PubMed ID: 32681964 [TBL] [Abstract][Full Text] [Related]
19. Determination for dry layer resistance of sucrose under various primary drying conditions using a novel simulation program for designing pharmaceutical lyophilization cycle. Kodama T; Sawada H; Hosomi H; Takeuchi M; Wakiyama N; Yonemochi E; Terada K Int J Pharm; 2013 Aug; 452(1-2):180-7. PubMed ID: 23684561 [TBL] [Abstract][Full Text] [Related]
20. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model. Kuu WY; O'Bryan KR; Hardwick LM; Paul TW Pharm Dev Technol; 2011 Aug; 16(4):343-57. PubMed ID: 20387998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]