These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2078961)

  • 1. Production of corneal lesions using high-intensity focused ultrasound.
    Rutzen AR; Roberts CW; Driller J; Gomez D; Lucas BC; Lizzi FL; Coleman DJ
    Cornea; 1990 Oct; 9(4):324-30. PubMed ID: 2078961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histologic evaluation of human posterior lamellar discs for femtosecond laser Descemet's stripping endothelial keratoplasty.
    Cheng YY; Kang SJ; Grossniklaus HE; Pels E; Duimel HJ; Frederik PM; Hendrikse F; Nuijts RM
    Cornea; 2009 Jan; 28(1):73-9. PubMed ID: 19092410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal surface ablation by 193 nm excimer laser and wound healing in rabbits.
    Gaster RN; Binder PS; Coalwell K; Berns M; McCord RC; Burstein NL
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):90-8. PubMed ID: 2912916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of corneal wound healing of photorefractive keratectomy and laser in situ keratomileusis in rabbits].
    Ma XH; Li JH; Bi HS; Zhou F; Li Y
    Zhonghua Yan Ke Za Zhi; 2003 Mar; 39(3):140-5. PubMed ID: 12880569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterior stromal micropuncture electron microscopic changes in the rabbit cornea.
    Judge D; Payant J; Frase S; Wood TO
    Cornea; 1990 Apr; 9(2):152-60. PubMed ID: 2328583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation.
    Zhang ZY; Chu RY; Zhou XT; Dai JH; Sun XH; Hoffman MR; Zhang XR
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2147-53. PubMed ID: 19136715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Change in epithelial keratin expression during healing of rabbit corneal wounds.
    Jester JV; Rodrigues MM; Sun TT
    Invest Ophthalmol Vis Sci; 1985 Jun; 26(6):828-37. PubMed ID: 2409047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cornea of the sand lance, Limnichthyes fasciatus (Creeiidae).
    Collin HB; Collin SP
    Cornea; 1988; 7(3):190-203. PubMed ID: 3168488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scanning electron microscopy of rabbit corneal scars.
    Cintron C; Szamier RB; Hassinger LC; Kublin CL
    Invest Ophthalmol Vis Sci; 1982 Jul; 23(1):50-63. PubMed ID: 7085221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wound healing in cultured corneal endothelial cells.
    Fujikawa LS; Wickham MG; Binder PS
    Invest Ophthalmol Vis Sci; 1980 Jul; 19(7):793-801. PubMed ID: 7390726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural analyses of enzyme-treated microfibrils in rabbit corneal stroma.
    Carlson EC; Waring GO
    Invest Ophthalmol Vis Sci; 1988 Apr; 29(4):578-85. PubMed ID: 3281915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal microscopic characterization of wound repair after photorefractive keratectomy.
    Møller-Pedersen T; Li HF; Petroll WM; Cavanagh HD; Jester JV
    Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):487-501. PubMed ID: 9501858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaylsis of birefringence during wound healing and remodeling following alkali burns in rabbit cornea.
    Huang Y; Meek KM; Ho MW; Paterson CA
    Exp Eye Res; 2001 Oct; 73(4):521-32. PubMed ID: 11825023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Area and depth of surfactant-induced corneal injury predicts extent of subsequent ocular responses.
    Jester JV; Petroll WM; Bean J; Parker RD; Carr GJ; Cavanagh HD; Maurer JK
    Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2610-25. PubMed ID: 9856771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative observations on corneas, with special reference to Bowman's layer and Descemet's membrane in mammals and amphibians.
    Hayashi S; Osawa T; Tohyama K
    J Morphol; 2002 Dec; 254(3):247-58. PubMed ID: 12386895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotating brush for fast removal of corneal epithelium.
    Pallikaris IG; Karoutis AD; Lydataki SE; Siganos DS
    J Refract Corneal Surg; 1994; 10(4):439-42. PubMed ID: 7528616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK.
    Møller-Pedersen T; Cavanagh HD; Petroll WM; Jester JV
    Curr Eye Res; 1998 Jul; 17(7):736-47. PubMed ID: 9678420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning electron microscopy of corneal incisions using steel, diamond, and sapphire blades.
    Van Meter WS; Breen C; Hainsworth DP; Geissler R
    Ophthalmic Surg; 1990 Jul; 21(7):475-80. PubMed ID: 2398997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electron microscopy of corneal wound healing in the rabbit.
    Haik BG; Zimny ML
    Invest Ophthalmol Vis Sci; 1977 Sep; 16(9):787-96. PubMed ID: 893031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of epithelial downgrowth: II. Scanning and transmission electron microscopy of corneal epithelialization.
    Burris TE; Rowsey JJ; Nordquist RE
    Cornea; 1984; 3(2):141-51. PubMed ID: 6399236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.