These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 2079332)

  • 1. Use of high resolution thermal denaturation approach in preliminary identification of plant DNAs.
    Kumar LS; Sainani MN; Ranjekar PK; Patwardhan VR
    Indian J Biochem Biophys; 1990 Oct; 27(5):280-3. PubMed ID: 2079332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular analysis of cucurbitaceae genomes: II--comparison of high resolution thermal denaturation profiles of DNAs in seven plant species.
    Bhave M; Lagu M; Gadre SR; Ranjekar PK
    Indian J Biochem Biophys; 1984 Apr; 21(2):81-4. PubMed ID: 6490079
    [No Abstract]   [Full Text] [Related]  

  • 3. [Comparative investigation of genomes of some higher plants].
    Beridze TG
    Mol Biol (Mosk); 1979; 13(4):925-34. PubMed ID: 470947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of dye-binding/high-resolution thermal denaturation for the identification of mutations in the SLC22A5 gene.
    Dobrowolski SF; McKinney JT; Amat di San Filippo C; Giak Sim K; Wilcken B; Longo N
    Hum Mutat; 2005 Mar; 25(3):306-13. PubMed ID: 15714519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization.
    She C; Liu J; Diao Y; Hu Z; Song Y
    J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of the antitumour alkaloid coralyne with duplex deoxyribonucleic acid structures: spectroscopic and viscometric studies.
    Pal S; Kumar GS; Debnath D; Maiti M
    Indian J Biochem Biophys; 1998 Dec; 35(6):321-32. PubMed ID: 10412225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low homology of repeated DNA sequences in millets.
    Sivaraman L; Gupta VS; Ranjekar PK
    Indian J Biochem Biophys; 1985 Oct; 22(5):268-73. PubMed ID: 3833663
    [No Abstract]   [Full Text] [Related]  

  • 8. Application of higher derivative techniques to analysis of high-resolution thermal denaturation profiles of reassociated repetitive DNA.
    Cuellar RE; Ford GA; Briggs WR; Thompson WF
    Proc Natl Acad Sci U S A; 1978 Dec; 75(12):6026-30. PubMed ID: 366608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Physical mapping of Streptomyces coelicolor Ae(2) actinophages. IV. Partial denaturation maps].
    Sladkova IA
    Mol Biol (Mosk); 1980; 14(5):1137-41. PubMed ID: 7421819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High resolution thermal denaturation of mammalian DNAs.
    Guttmann T; Vítek A; Pivec L
    Nucleic Acids Res; 1977 Feb; 4(2):285-97. PubMed ID: 840642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation-sensitive high-resolution melting.
    Wojdacz TK; Dobrovic A; Hansen LL
    Nat Protoc; 2008; 3(12):1903-8. PubMed ID: 19180074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of small loops in DNA melting.
    Lando DY; Fridman AS
    Biopolymers; 2001 Apr; 58(4):374-89. PubMed ID: 11180051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural organization of double-stranded RNA from killer yeasts Saccharomyces cerevisiae by the thermal denaturation method].
    Duzhak AB; Lokhov SG; Zakabunin AI; Podgornyĭ VF
    Mol Biol (Mosk); 1985; 19(6):1579-84. PubMed ID: 3908912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal denaturation of deoxyribonucleoproteins and DNA of the sperm of two closely related sea urchin species.
    Barenboim GM; Borkhsenius SN; Zhirmunskii AV; Shchelkov BV
    Mol Biol; 1971; 5(1):25-32. PubMed ID: 5154800
    [No Abstract]   [Full Text] [Related]  

  • 15. Qualitative changes in DNA indicating differential DNA replication during early embryogenesis of the newt Triturus vulgaris.
    Lohmann K; Schubert L
    J Embryol Exp Morphol; 1980 Jun; 57():61-70. PubMed ID: 7430936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dependence of the melting temperature of phage DNA on the GC pair content in a solvent with low ionic strength].
    Kul'ba AM; Gorelyshev AS
    Mol Biol (Mosk); 1983; 17(5):1108-11. PubMed ID: 6633530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharp melting of polymer-DNA hybrids: an associative phase separation approach.
    Kudlay A; Gibbs JM; Schatz GC; Nguyen ST; de la Cruz MO
    J Phys Chem B; 2007 Feb; 111(7):1610-9. PubMed ID: 17256893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonated structures of naturally occurring deoxyribonucleic acids and their interaction with berberine.
    Bhadra K; Kumar GS; Das S; Islam MM; Maiti M
    Bioorg Med Chem; 2005 Aug; 13(16):4851-63. PubMed ID: 15946849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Base composition of DNA from glomalean fungi: high amounts of methylated cytosine.
    Hosny M; Païs de Barros JP; Gianinazzi-Pearson V; Dulieu H
    Fungal Genet Biol; 1997 Oct; 22(2):103-11. PubMed ID: 9367657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in chromatin structure during rat liver regeneration as demonstrated by thermal melting analyses.
    Letnansky K; Vardapetjan HR
    Biochem Int; 1983 Jun; 6(6):783-8. PubMed ID: 6679735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.