These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20795481)

  • 1. [The miniature system of independent micromanipulators for recording the neuronal activity in unrestrained animals].
    Orlov AA; Filatova EV
    Ross Fiziol Zh Im I M Sechenova; 2010 Jun; 96(6):640-3. PubMed ID: 20795481
    [No Abstract]   [Full Text] [Related]  

  • 2. A technique for recording the activity of brain-stem neurones in awake, unrestrained cats using microwires and an implantable micromanipulator.
    Banks D; Kuriakose M; Matthews B
    J Neurosci Methods; 1993 Jan; 46(1):83-8. PubMed ID: 8459725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A miniature multichannel micromanipulator for the independent shifting of microelectrodes in a bundle].
    Orlov AA; Shefer VI; Mochenkov BP
    Fiziol Zh SSSR Im I M Sechenova; 1989 Sep; 75(9):1275-9. PubMed ID: 2599139
    [No Abstract]   [Full Text] [Related]  

  • 4. A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions.
    Rebec GV; Langley PE; Pierce RC; Wang Z; Heidenreich BA
    J Neurosci Methods; 1993 Apr; 47(1-2):53-9. PubMed ID: 8321014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A micromanipulator for two-channel recording of neuron activity with high-impedance electrodes in freely moving animals.
    Korshunov VA
    Neurosci Behav Physiol; 1999; 29(6):677-80. PubMed ID: 10651325
    [No Abstract]   [Full Text] [Related]  

  • 6. Electrostatic microactuators for precise positioning of neural microelectrodes.
    Muthuswamy J; Okandan M; Jain T; Gilletti A
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1748-55. PubMed ID: 16235660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A motorized microdrive for recording of neural ensembles in awake behaving rats.
    Venkateswaran R; Boldt C; Parthasarathy J; Ziaie B; Erdman AG; Redish AD
    J Biomech Eng; 2005 Nov; 127(6):1035-40. PubMed ID: 16438246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating 3D-printing technology in the design of head-caps and electrode drives for recording neurons in multiple brain regions.
    Headley DB; DeLucca MV; Haufler D; Paré D
    J Neurophysiol; 2015 Apr; 113(7):2721-32. PubMed ID: 25652930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature telemetry system for the recording of action and field potentials.
    Chien CN; Jaw FS
    J Neurosci Methods; 2005 Aug; 147(1):68-73. PubMed ID: 15916809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo validation of the electronic depth control probes.
    Dombovári B; Fiáth R; Kerekes BP; Tóth E; Wittner L; Horváth D; Seidl K; Herwik S; Torfs T; Paul O; Ruther P; Neves H; Ulbert I
    Biomed Tech (Berl); 2014 Aug; 59(4):283-9. PubMed ID: 24114890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A method for the multiple implantation of semimicroelectrodes into the brain of small animals for research in free behavior].
    Chebkasov SA; Laskov VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(5):1051-6. PubMed ID: 8560926
    [No Abstract]   [Full Text] [Related]  

  • 12. A microwire technique for long term recording of single units in the brains of unrestrained animals [proceedings].
    Palmer C
    J Physiol; 1976 Dec; 263(1):99P-101P. PubMed ID: 1011166
    [No Abstract]   [Full Text] [Related]  

  • 13. [Long-term recording of single unit activity and criteria for estimation of stability].
    Vasilyeva LN; Badakva AM; Miller NV; Zobova LN; Roschin VY; Bondar IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(6):693-701. PubMed ID: 25975145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel high channel-count system for acute multisite neuronal recordings.
    Hofmann UG; Folkers A; Mösch F; Malina T; Menne KM; Biella G; Fagerstedt P; De Schutter E; Jensen W; Yoshida K; Hoehl D; Thomas U; Kindlundh MG; Norlin P; de Curtis M
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel system for recording from single neurons in unrestrained animals.
    Sherk H; Wilkinson EJ
    J Neurosci Methods; 2008 Aug; 173(2):201-7. PubMed ID: 18619491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.
    Moxon KA; Kalkhoran NM; Markert M; Sambito MA; McKenzie JL; Webster JT
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):881-9. PubMed ID: 15188854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Device for protracted recording of neuronal activity in chronic experiments].
    Mikhailov AV; Dekhkanbaev SM
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):767-71. PubMed ID: 7286312
    [No Abstract]   [Full Text] [Related]  

  • 19. Microelectrode array for chronic deep-brain microstimulation and recording.
    McCreery D; Lossinsky A; Pikov V; Liu X
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):726-37. PubMed ID: 16602580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.