These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20795498)

  • 21. Multiple loci not only Rf3 involved in the restoration ability of pollen fertility, anther exsertion and pollen shedding to S type cytoplasmic male sterile in maize.
    Feng Y; Zheng Q; Song H; Wang Y; Wang H; Jiang L; Yan J; Zheng Y; Yue B
    Theor Appl Genet; 2015 Nov; 128(11):2341-50. PubMed ID: 26220224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of fine-scale genetic structure on male mating success in gynodioecious Beta vulgaris ssp. maritima.
    DE Cauwer I; Dufay M; Cuguen J; Arnaud JF
    Mol Ecol; 2010 Apr; 19(8):1540-58. PubMed ID: 20345690
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A cryptic cytoplasmic male sterility unveils a possible gynodioecious past for Arabidopsis thaliana.
    Gobron N; Waszczak C; Simon M; Hiard S; Boivin S; Charif D; Ducamp A; Wenes E; Budar F
    PLoS One; 2013; 8(4):e62450. PubMed ID: 23658632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The complementary interaction of Rf genes in the cytoplasm of CMS maize of the Moldavian type].
    Gontarovskiĭ VA
    Tsitol Genet; 2003; 37(3):16-23. PubMed ID: 12945178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular diversity of male sterility inducing and male-fertile cytoplasms in the genus Helianthus.
    Horn R
    Theor Appl Genet; 2002 Mar; 104(4):562-570. PubMed ID: 12582659
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a novel thermosensitive restorer of fertility for cytoplasmic male sterility in maize.
    Gabay-Laughnan S; Kuzmin EV; Monroe J; Roark L; Newton KJ
    Genetics; 2009 May; 182(1):91-103. PubMed ID: 19255365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Identification and registration of corn genotypes using molecular markers].
    Kozhukhova NE; Sivolap IuM
    Genetika; 2004 Jan; 40(1):59-66. PubMed ID: 15027201
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fertility restoration and mitochondrial nucleic acids distinguish at least five subgroups among cms-S cytoplasms of maize (Zea mays L.).
    Sisco PH; Gracen VE; Everett HL; Earle ED; Pring DR; McNay JW; Levings CS
    Theor Appl Genet; 1985 Nov; 71(1):5-15. PubMed ID: 24247331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative proteomic analysis of mitochondrial proteins from maize CMS-C sterile, maintainer and restorer anthers.
    Zhang H; Wang B; Li B; Lin Y; Yang H; Ding D; Xue Y; Tang J
    Plant Genome; 2020 Jul; 13(2):e20022. PubMed ID: 33016607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement.
    Case AL; Willis JH
    Evolution; 2008 May; 62(5):1026-39. PubMed ID: 18315575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new search for restorer cytoplasm: the restorer cytoplasm for the gene ms10 most probably does not exist in maize.
    Vidakovic MB; Vancetovic J; Vidakovic M
    J Hered; 2002; 93(6):444-7. PubMed ID: 12642646
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K
    Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Spatiotemporal variation of root systems of cytoplasmic male sterile maize (Zea may L.) and its homotype fertile lines].
    Li CF; Liu P; Wang KJ; Dong ST; Zhang JW
    Ying Yong Sheng Tai Xue Bao; 2008 Oct; 19(10):2209-14. PubMed ID: 19123357
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Genetic study on two maize male sterile mutants obtained by space mutagenesis].
    Li YL; Yu YL; Liu YX; Li XH; Fu JF
    Yi Chuan; 2007 Jun; 29(6):738-44. PubMed ID: 17650492
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ORF355 confers enhanced salinity stress adaptability to S-type cytoplasmic male sterility maize by modulating the mitochondrial metabolic homeostasis.
    Xiao S; Song W; Xing J; Su A; Zhao Y; Li C; Shi Z; Li Z; Wang S; Zhang R; Pei Y; Chen H; Zhao J
    J Integr Plant Biol; 2023 Mar; 65(3):656-673. PubMed ID: 36223073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression characterization of genes for CMS-C in maize.
    Huang L; Xiang J; Liu J; Rong T; Wang J; Lu Y; Tang Q; Wen W; Cao M
    Protoplasma; 2012 Oct; 249(4):1119-27. PubMed ID: 22160189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of genetic distance between 10 maize accessions with varying response to different levels of soil moisture.
    Aslam M; Awan FS; Khan IA; Khan AI
    Genet Mol Res; 2009 Dec; 8(4):1459-65. PubMed ID: 20013660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a gene responsible for cytoplasmic male-sterility in onions (Allium cepa L.) using comparative analysis of mitochondrial genome sequences of two recently diverged cytoplasms.
    Kim B; Yang TJ; Kim S
    Theor Appl Genet; 2019 Feb; 132(2):313-322. PubMed ID: 30374528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex.
    Yang H; Xue Y; Li B; Lin Y; Li H; Guo Z; Li W; Fu Z; Ding D; Tang J
    Mol Plant; 2022 May; 15(5):872-886. PubMed ID: 35272047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of S2 episomal sequences in the generation of NCS4 deletion mutation in maize mitochondria.
    Newton KJ; Mariano JM; Gibson CM; Kuzmin E; Gabay-Laughnan S
    Dev Genet; 1996; 19(3):277-86. PubMed ID: 8952070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.