BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20795664)

  • 1. Influence of taxonomic relatedness and chemical mode of action in acute interspecies estimation models for aquatic species.
    Raimondo S; Jackson CR; Barron MG
    Environ Sci Technol; 2010 Oct; 44(19):7711-6. PubMed ID: 20795664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute toxicity value extrapolation with fish and aquatic invertebrates.
    Buckler DR; Mayer FL; Ellersieck MR; Asfaw A
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):546-58. PubMed ID: 16205993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of interspecies correlation estimation (ICE) models to predict the reproduction toxicity of EDCs to aquatic species.
    Fan J; Yan Z; Zheng X; Wu J; Wang S; Wang P; Zhang Q
    Chemosphere; 2019 Jun; 224():833-839. PubMed ID: 30851535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China.
    Feng CL; Wu FC; Dyer SD; Chang H; Zhao XL
    Chemosphere; 2013 Jan; 90(3):1177-83. PubMed ID: 23058200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of action-based local QSAR modeling for the prediction of acute toxicity in the fathead minnow.
    Yuan H; Wang YY; Cheng YY
    J Mol Graph Model; 2007 Jul; 26(1):327-35. PubMed ID: 17224289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and practical application of petroleum and dispersant interspecies correlation models for aquatic species.
    Bejarano AC; Barron MG
    Environ Sci Technol; 2014 Apr; 48(8):4564-72. PubMed ID: 24678991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute Toxicity Prediction to Threatened and Endangered Species Using Interspecies Correlation Estimation (ICE) Models.
    Willming MM; Lilavois CR; Barron MG; Raimondo S
    Environ Sci Technol; 2016 Oct; 50(19):10700-10707. PubMed ID: 27585402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of chemical toxicity to wildlife species using interspecies correlation models.
    Raimondo S; Mineau P; Barron MG
    Environ Sci Technol; 2007 Aug; 41(16):5888-94. PubMed ID: 17874802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development.
    Barron MG; Lilavois CR; Martin TM
    Aquat Toxicol; 2015 Apr; 161():102-7. PubMed ID: 25700118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecies correlations of toxicity to eight aquatic organisms: theoretical considerations.
    Zhang XJ; Qin HW; Su LM; Qin WC; Zou MY; Sheng LX; Zhao YH; Abraham MH
    Sci Total Environ; 2010 Sep; 408(20):4549-55. PubMed ID: 20673582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of in silico development of aquatic toxicity species sensitivity distributions.
    Barron MG; Jackson CR; Awkerman JA
    Aquat Toxicol; 2012 Jul; 116-117():1-7. PubMed ID: 22459408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of wildlife hazard levels using interspecies correlation models and standard laboratory rodent toxicity data.
    Awkerman JA; Raimondo S; Barron MG
    J Toxicol Environ Health A; 2009; 72(24):1604-9. PubMed ID: 20077235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical evaluation of chronic toxicity data on aquatic organisms for the hazard identification: the chemicals toxicity distribution approach.
    González-Doncel M; Ortiz J; Izquierdo JJ; Martín B; Sánchez P; Tarazona JV
    Chemosphere; 2006 May; 63(5):835-44. PubMed ID: 16169042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmenting aquatic species sensitivity distributions with interspecies toxicity estimation models.
    Awkerman JA; Raimondo S; Jackson CR; Barron MG
    Environ Toxicol Chem; 2014 Mar; 33(3):688-95. PubMed ID: 24214839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: implications for deriving safe extrapolation factors.
    Kwok KW; Leung KM; Lui GS; Chu SV; Lam PK; Morritt D; Maltby L; Brock TC; Van den Brink PJ; Warne MS; Crane M
    Integr Environ Assess Manag; 2007 Jan; 3(1):49-67. PubMed ID: 17283595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How well can we predict the toxicity of pesticide mixtures to aquatic life?
    Belden JB; Gilliom RJ; Lydy MJ
    Integr Environ Assess Manag; 2007 Jul; 3(3):364-72. PubMed ID: 17695109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for Interspecies Toxicity Estimation in Soil Invertebrates.
    Barron MG; Lambert FN
    Toxics; 2021 Oct; 9(10):. PubMed ID: 34678961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors.
    Carriger JF; Martin TM; Barron MG
    Aquat Toxicol; 2016 Nov; 180():11-24. PubMed ID: 27640153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.