BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20795896)

  • 1. Physical-chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations.
    Meissner T; Kühnel D; Busch W; Oswald S; Richter V; Michaelis A; Schirmer K; Potthoff A
    Nanotoxicology; 2010 Jun; 4(2):196-206. PubMed ID: 20795896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physico-chemical characterization in the light of toxicological effects.
    Meissner T; Potthoff A; Richter V
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():35-9. PubMed ID: 19558232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.
    Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM
    Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.
    Tantra R; Tompkins J; Quincey P
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):275-81. PubMed ID: 19775871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of bovine serum albumin with aluminum polyoxocations and aluminum hydroxide.
    Deschaume O; Shafran KL; Perry CC
    Langmuir; 2006 Nov; 22(24):10078-88. PubMed ID: 17107003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment.
    Kato H; Suzuki M; Fujita K; Horie M; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Nakamura A; Kinugasa S
    Toxicol In Vitro; 2009 Aug; 23(5):927-34. PubMed ID: 19397995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol.
    Guiot C; Spalla O
    Environ Sci Technol; 2013 Jan; 47(2):1057-64. PubMed ID: 23240597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of freeze-dried 2-methoxyestradiol nanoparticle powders.
    Du B; Li XT; Zhao Y; A YM; Zhang ZZ
    Pharmazie; 2010 Jul; 65(7):471-6. PubMed ID: 20662313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy.
    Lee SH; Heng D; Ng WK; Chan HK; Tan RB
    Int J Pharm; 2011 Jan; 403(1-2):192-200. PubMed ID: 20951781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous screening of the stability and dosimetry of nanoparticles dispersions for in vitro toxicological studies with static multiple light scattering technique.
    Sentis MPL; Brambilla G; Fessard V; Meunier G
    Toxicol In Vitro; 2020 Dec; 69():104972. PubMed ID: 32822770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding a relaxation behavior in a nanoparticle suspension for drug delivery applications.
    Deng Z; Xu S; Li S
    Int J Pharm; 2008 Mar; 351(1-2):236-43. PubMed ID: 18093763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of bovine serum albumin.
    Shamim N; Hong L; Hidajat K; Uddin MS
    J Colloid Interface Sci; 2006 Dec; 304(1):1-8. PubMed ID: 17010360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured CaWO4, CaWO4 : Pb2+ and CaWO4 : Tb3+ particles: polyol-mediated synthesis and luminescent properties.
    Wang Z; Lil G; Quan Z; Kong D; Liu X; Yu M; Lin J
    J Nanosci Nanotechnol; 2007 Feb; 7(2):602-9. PubMed ID: 17450802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdetermination of proteins by resonance light scattering technique based on aggregation of ferric nanoparticles.
    Shu-hong Z; Yong-shan F; Shuo F; Yun-feng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):748-52. PubMed ID: 19111501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of nanoparticle dispersions for in-vitro toxicity testing.
    Vippola M; Falck GC; Lindberg HK; Suhonen S; Vanhala E; Norppa H; Savolainen K; Tossavainen A; Tuomi T
    Hum Exp Toxicol; 2009 Jun; 28(6-7):377-85. PubMed ID: 19755449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation.
    Langer K; Anhorn MG; Steinhauser I; Dreis S; Celebi D; Schrickel N; Faust S; Vogel V
    Int J Pharm; 2008 Jan; 347(1-2):109-17. PubMed ID: 17681686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct conjugation of semiconductor nanoparticles with proteins.
    Meziani MJ; Pathak P; Harruff BA; Hurezeanu R; Sun YP
    Langmuir; 2005 Mar; 21(5):2008-11. PubMed ID: 15723502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of fullerene colloidal suspension in a cell culture medium for in vitro toxicity assessment.
    Kato H; Shinohara N; Nakamura A; Horie M; Fujita K; Takahashi K; Iwahashi H; Endoh S; Kinugasa S
    Mol Biosyst; 2010 Jul; 6(7):1238-46. PubMed ID: 20414485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay.
    Tessier PM; Jinkoji J; Cheng YC; Prentice JL; Lenhoff AM
    J Am Chem Soc; 2008 Mar; 130(10):3106-12. PubMed ID: 18271584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.