These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2079606)

  • 1. Metabolism of linoleic acid in porcine epidermis.
    Wertz PW; Downing DT
    J Lipid Res; 1990 Oct; 31(10):1839-44. PubMed ID: 2079606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid composition of cultured murine keratinocytes.
    Madison KC; Wertz PW; Strauss JS; Downing DT
    J Invest Dermatol; 1986 Aug; 87(2):253-9. PubMed ID: 3090156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of essential fatty acid deficiency on the epidermal sphingolipids of the rat.
    Wertz PW; Cho ES; Downing DT
    Biochim Biophys Acta; 1983 Oct; 753(3):350-5. PubMed ID: 6615869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Murine keratinocyte cultures grown at the air/medium interface synthesize stratum corneum lipids and "recycle" linoleate during differentiation.
    Madison KC; Swartzendruber DC; Wertz PW; Downing DT
    J Invest Dermatol; 1989 Jul; 93(1):10-7. PubMed ID: 2473131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The time course of lipid biosynthesis in pig epidermis.
    Hedberg CL; Wertz PW; Downing DT
    J Invest Dermatol; 1988 Aug; 91(2):169-74. PubMed ID: 3397589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Precise Structures and Stereochemistry of Trihydroxy-linoleates Esterified in Human and Porcine Epidermis and Their Significance in Skin Barrier Function: IMPLICATION OF AN EPOXIDE HYDROLASE IN THE TRANSFORMATIONS OF LINOLEATE.
    Chiba T; Thomas CP; Calcutt MW; Boeglin WE; O'Donnell VB; Brash AR
    J Biol Chem; 2016 Jul; 291(28):14540-54. PubMed ID: 27151221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo incorporation of (1-14C)-linoleic acid into the lipids of enamel and dentine of normal and essential fatty acid deficient rats.
    Prout RE; Odutuga AA
    Arch Oral Biol; 1974 Dec; 19(12):1167-70. PubMed ID: 4531878
    [No Abstract]   [Full Text] [Related]  

  • 8. Linoleate-Containing Acylglucosylceramide, Acylceramide, and Events Associated with Formation of the Epidermal Permeability Barrier.
    Wertz PW
    Skin Pharmacol Physiol; 2023; 36(5):225-234. PubMed ID: 38035548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of essential fatty acid deficiency on epidermal O-acylsphingolipids and transepidermal water loss in young pigs.
    Melton JL; Wertz PW; Swartzendruber DC; Downing DT
    Biochim Biophys Acta; 1987 Sep; 921(2):191-7. PubMed ID: 3651483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential function of linoleic acid esterified in acylglucosylceramide and acylceramide in maintaining the epidermal water permeability barrier. Evidence from feeding studies with oleate, linoleate, arachidonate, columbinate and alpha-linolenate.
    Hansen HS; Jensen B
    Biochim Biophys Acta; 1985 May; 834(3):357-63. PubMed ID: 3922424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of linoleic acid and other essential fatty acids in the epidermis of the rat.
    Nugteren DH; Christ-Hazelhof E; van der Beek A; Houtsmuller UM
    Biochim Biophys Acta; 1985 May; 834(3):429-36. PubMed ID: 3922425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of topically applied fatty acid methyl esters in BALB/C mouse epidermis.
    Wertz PW; Downing DT
    J Dermatol Sci; 1990 Jan; 1(1):33-7. PubMed ID: 2078539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two C18 hydroxy-cyclohexenone fatty acids from mammalian epidermis: Potential relation to 12R-lipoxygenase and covalent binding of ceramides.
    Brash AR; Noguchi S; Boeglin WE; Calcutt MW; Stec DF; Schneider C; Meyer JM
    J Biol Chem; 2023 Jun; 299(6):104739. PubMed ID: 37086788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linoleate content of epidermal acylglucosylceramide in newborn, growing and mature mice.
    Wertz PW; Downing DT
    Biochim Biophys Acta; 1986 May; 876(3):469-73. PubMed ID: 3707979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nonpolar lipids of pig epidermis.
    Hedberg CL; Wertz PW; Downing DT
    J Invest Dermatol; 1988 Feb; 90(2):225-9. PubMed ID: 3339264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipid composition and cholesterol esterifying activity in microsomal preparations of porcine coronary arteries and heart tissue.
    Cho BH
    Biochem Med; 1983 Feb; 29(1):64-73. PubMed ID: 6838501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation in vitro of 14C fatty acids into bovine sebaceous gland and dermal lipids.
    McMaster JD; Jenkinson DM; Noble RC; Elder HY
    Res Vet Sci; 1985 May; 38(3):341-5. PubMed ID: 4012036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of linoleate versus linoelaidate in the laying hen.
    Lanser AC; Mounts TL; Emken EA
    Lipids; 1978 Feb; 13(2):103-9. PubMed ID: 634041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of 14C into tissue lipids after oral administration of [1-14C]linoleic acid in rats fed different levels of essential fatty acids.
    Becker W; MÃ¥nsson JE
    J Nutr; 1985 Oct; 115(10):1248-58. PubMed ID: 4045568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification, isolation and characterization of epidermal lipids containing linoleic acid.
    Bowser PA; Nugteren DH; White RJ; Houtsmuller UM; Prottey C
    Biochim Biophys Acta; 1985 May; 834(3):419-28. PubMed ID: 3995076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.