BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2079661)

  • 1. pH-dependent intestinal transport of monocarboxylic acids: carrier-mediated and H(+)-cotransport mechanism versus pH-partition hypothesis.
    Tsuji A; Simanjuntak MT; Tamai I; Terasaki T
    J Pharm Sci; 1990 Dec; 79(12):1123-4. PubMed ID: 2079661
    [No Abstract]   [Full Text] [Related]  

  • 2. Intestinal brush-border transport of the oral cephalosporin antibiotic, cefdinir, mediated by dipeptide and monocarboxylic acid transport systems in rabbits.
    Tsuji A; Tamai I; Nakanishi M; Terasaki T; Hamano S
    J Pharm Pharmacol; 1993 Nov; 45(11):996-8. PubMed ID: 7908046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Molecular characterization of intestinal absorption of drugs by carrier-mediated transport mechanisms].
    Tamai I
    Yakugaku Zasshi; 1997 Jul; 117(7):415-34. PubMed ID: 9261213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcellular transport of benzoic acid across Caco-2 cells by a pH-dependent and carrier-mediated transport mechanism.
    Tsuji A; Takanaga H; Tamai I; Terasaki T
    Pharm Res; 1994 Jan; 11(1):30-7. PubMed ID: 8140053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the monocarboxylic acid transport system in the intestinal absorption of an orally active beta-lactam prodrug: carindacillin as a model.
    Li YH; Tanno M; Itoh T; Yamada H
    Int J Pharm; 1999 Nov; 191(2):151-9. PubMed ID: 10564841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical and functional characterization of pH-dependent intestinal absorption of weak organic acids by the monocarboxylic acid transporter MCT1.
    Tamai I; Sai Y; Ono A; Kido Y; Yabuuchi H; Takanaga H; Satoh E; Ogihara T; Amano O; Izeki S; Tsuji A
    J Pharm Pharmacol; 1999 Oct; 51(10):1113-21. PubMed ID: 10579682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ and in vitro evidence for stereoselective and carrier-mediated transport of monocarboxylic acids across intestinal epithelial tissue.
    Ogihara T; Tamai I; Tsuji A
    Biol Pharm Bull; 2000 Jul; 23(7):855-9. PubMed ID: 10919366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of cefdinir uptake by rabbit small intestinal brush-border membrane vesicles.
    Kitagawa S; Sugaya Y; Kaseda Y; Sato S
    J Pharm Pharmacol; 1997 May; 49(5):516-9. PubMed ID: 9178187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.
    Takanaga H; Tamai I; Tsuji A
    J Pharm Pharmacol; 1994 Jul; 46(7):567-70. PubMed ID: 7996384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new interpretation of salicylic acid transport across the lipid bilayer: implications of pH-dependent but not carrier-mediated absorption from the gastrointestinal tract.
    Takagi M; Taki Y; Sakane T; Nadai T; Sezaki H; Oku N; Yamashita S
    J Pharmacol Exp Ther; 1998 Jun; 285(3):1175-80. PubMed ID: 9618420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-dependent fluoride transport in intestinal brush border membrane vesicles.
    He H; Ganapathy V; Isales CM; Whitford GM
    Biochim Biophys Acta; 1998 Jul; 1372(2):244-54. PubMed ID: 9675300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotinic acid transport mediated by pH-dependent anion antiporter and proton cotransporter in rabbit intestinal brush-border membrane.
    Takanaga H; Maeda H; Yabuuchi H; Tamai I; Higashida H; Tsuji A
    J Pharm Pharmacol; 1996 Oct; 48(10):1073-7. PubMed ID: 8953511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles.
    Nord E; Wright SH; Kippen I; Wright EM
    Am J Physiol; 1982 Nov; 243(5):F456-62. PubMed ID: 7137347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetate uptake by intestinal brush border membrane vesicles.
    Watson AJ; Brennan EA; Farthing MJ; Fairclough PD
    Gut; 1991 Apr; 32(4):383-5. PubMed ID: 2026338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of a proton-cotransporter, MCT1, in the intestinal transport of monocarboxylic acids.
    Tamai I; Takanaga H; Maeda H; Sai Y; Ogihara T; Higashida H; Tsuji A
    Biochem Biophys Res Commun; 1995 Sep; 214(2):482-9. PubMed ID: 7677755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel effect of amiloride on H+-dependent Na+ transport.
    Dubinsky WP; Frizzell RA
    Am J Physiol; 1983 Jul; 245(1):C157-9. PubMed ID: 6869519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro studies of intestinal drug absorption. Determination of partition and distribution coefficients with brush border membrane vesicles.
    Alcorn CJ; Simpson RJ; Leahy D; Peters TJ
    Biochem Pharmacol; 1991 Nov; 42(12):2259-64. PubMed ID: 1764112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na+ and pH dependence of proline and beta-alanine absorption in rat small intestine.
    IƱigo C; Barber A; Lostao MP
    Acta Physiol (Oxf); 2006 Apr; 186(4):271-8. PubMed ID: 16634782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen ion cotransport by the renal brush border glutamate transporter.
    Nelson PJ; Dean GE; Aronson PS; Rudnick G
    Biochemistry; 1983 Nov; 22(23):5459-63. PubMed ID: 6140027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carrier-mediated L-lactate transport in brush-border membrane vesicles from rat placenta during late gestation.
    Alonso de la Torre SR; Serrano MA; Alvarado F; Medina JM
    Biochem J; 1991 Sep; 278 ( Pt 2)(Pt 2):535-41. PubMed ID: 1654886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.