BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20797787)

  • 1. Morphometry of the epidermis of an invasive megascoelecid earthworm (Amynthas gracilis, Kinberg 1867) inhabiting actively volcanic soils in the Azores archipelago.
    Cunha L; Campos I; Montiel R; Rodrigues A; Morgan AJ
    Ecotoxicol Environ Saf; 2011 Jan; 74(1):25-32. PubMed ID: 20797787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioavailability and cellular effects of metals on Lumbricus terrestris inhabiting volcanic soils.
    Amaral A; Soto M; Cunha R; Marigómez I; Rodrigues A
    Environ Pollut; 2006 Jul; 142(1):103-8. PubMed ID: 16289775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Meteorological factors controlling soil gases and indoor CO2 concentration: a permanent risk in degassing areas.
    Viveiros F; Ferreira T; Silva C; Gaspar JL
    Sci Total Environ; 2009 Feb; 407(4):1362-72. PubMed ID: 18996571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Riboflavin content of coelomocytes in earthworm (Dendrodrilus rubidus) field populations as a molecular biomarker of soil metal pollution.
    Plytycz B; Lis-Molenda U; Cygal M; Kielbasa E; Grebosz A; Duchnowski M; Andre J; Morgan AJ
    Environ Pollut; 2009 Nov; 157(11):3042-50. PubMed ID: 19541398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic exposure to volcanic environments and chronic bronchitis incidence in the Azores, Portugal.
    Amaral AF; Rodrigues AS
    Environ Res; 2007 Mar; 103(3):419-23. PubMed ID: 16916511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic exposure to volcanic environments and cancer incidence in the Azores, Portugal.
    Amaral A; Rodrigues V; Oliveira J; Pinto C; Carneiro V; Sanbento R; Cunha R; Rodrigues A
    Sci Total Environ; 2006 Aug; 367(1):123-8. PubMed ID: 16540151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riboflavin mobilization from eleocyte stores in the earthworm Dendrodrilus rubidus inhabiting aerially-contaminated Ni smelter soil.
    Plytycz B; Kielbasa E; Grebosz A; Duchnowski M; Morgan AJ
    Chemosphere; 2010 Sep; 81(2):199-205. PubMed ID: 20633922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms.
    Robidoux PY; Svendsen C; Sarrazin M; Thiboutot S; Ampleman G; Hawari J; Weeks JM; Sunahara GI
    Arch Environ Contam Toxicol; 2005 Jan; 48(1):56-67. PubMed ID: 15657806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histopathological changes in the earthworm Eisenia andrei associated with the exposure to metals and radionuclides.
    Lourenço J; Silva A; Carvalho F; Oliveira J; Malta M; Mendo S; Gonçalves F; Pereira R
    Chemosphere; 2011 Nov; 85(10):1630-4. PubMed ID: 21911243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of earthworm Lampito mauritii (Kinberg) in amending lead and zinc treated soil.
    Maity S; Padhy PK; Chaudhury S
    Bioresour Technol; 2008 Oct; 99(15):7291-8. PubMed ID: 18331791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hazardous indoor CO2 concentrations in volcanic environments.
    Viveiros F; Gaspar JL; Ferreira T; Silva C
    Environ Pollut; 2016 Jul; 214():776-786. PubMed ID: 27155095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposure in OECD soil.
    Xiao NW; Song Y; Ge F; Liu XH; Ou-Yang ZY
    Chemosphere; 2006 Nov; 65(6):907-12. PubMed ID: 16682071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses.
    van Gestel CA; Koolhaas JE; Hamers T; van Hoppe M; van Roovert M; Korsman C; Reinecke SA
    Environ Pollut; 2009 Mar; 157(3):895-903. PubMed ID: 19062144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction.
    Smith BA; Greenberg B; Stephenson GL
    Chemosphere; 2010 Oct; 81(6):755-66. PubMed ID: 20678790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of zinc exposure on earthworms, Lumbricus terrestris, in an artificial soil.
    Lev SM; Matthies N; Snodgrass JW; Casey RE; Ownby DR
    Bull Environ Contam Toxicol; 2010 Jun; 84(6):687-91. PubMed ID: 20431863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioavailability of heavy metals and their effects on the midgut cells of a phytopaghous insect inhabiting volcanic environments.
    Rodrigues A; Cunha L; Amaral A; Medeiros J; Garcia P
    Sci Total Environ; 2008 Nov; 406(1-2):116-22. PubMed ID: 18793793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal accumulation in earthworms inhabiting floodplain soils.
    Vijver MG; Vink JP; Miermans CJ; van Gestel CA
    Environ Pollut; 2007 Jul; 148(1):132-40. PubMed ID: 17254683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on heavy metal toxicity to earthworm Lumbricus terrestris (Annelida: Oligochaeta).
    Khan MA; Ahmed SA; Salazar A; Gurumendi J; Khan A; Vargas M; von Catalin B
    Environ Toxicol; 2007 Oct; 22(5):487-94. PubMed ID: 17696136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do earthworms impact metal mobility and availability in soil?--a review.
    Sizmur T; Hodson ME
    Environ Pollut; 2009 Jul; 157(7):1981-9. PubMed ID: 19321245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and reproduction of earthworms in ultramafic soils.
    Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.