BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20798469)

  • 1. A six degree of freedom nanomanipulator design based on carbon nanotube bundles.
    Artyukhov VI
    Nanotechnology; 2010 Sep; 21(38):385304. PubMed ID: 20798469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical and biochemical sensing with modified single walled carbon nanotubes.
    Davis JJ; Coleman KS; Azamian BR; Bagshaw CB; Green ML
    Chemistry; 2003 Aug; 9(16):3732-9. PubMed ID: 12916096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon nanotubes as nanoscale mass conveyors.
    Regan BC; Aloni S; Ritchie RO; Dahmen U; Zettl A
    Nature; 2004 Apr; 428(6986):924-7. PubMed ID: 15118721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A liquid-Ga-filled carbon nanotube: a miniaturized temperature sensor and electrical switch.
    Dorozhkin PS; Tovstonog SV; Golberg D; Zhan J; Ishikawa Y; Shiozawa M; Nakanishi H; Nakata K; Bando Y
    Small; 2005 Nov; 1(11):1088-93. PubMed ID: 17193401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional evaluation of an independent multi-walled carbon nanotube probe by tomography with high-resolution transmission electron microscope.
    Tanigaki T; Hidaka K; Hirooka M; Nakata T
    J Electron Microsc (Tokyo); 2011; 60(1):19-24. PubMed ID: 20943676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.
    Tan W; Twomey J; Guo D; Madhavan K; Li M
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):111-20. PubMed ID: 20215088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors.
    Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS
    Small; 2005 May; 1(5):560-5. PubMed ID: 17193486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plumbing carbon nanotubes.
    Jin C; Suenaga K; Iijima S
    Nat Nanotechnol; 2008 Jan; 3(1):17-21. PubMed ID: 18654444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology.
    Wong SS; Joselevich E; Woolley AT; Cheung CL; Lieber CM
    Nature; 1998 Jul; 394(6688):52-5. PubMed ID: 9665127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic devices: coaxing light into small spaces.
    Thio T
    Nat Nanotechnol; 2007 Mar; 2(3):136-8. PubMed ID: 18654238
    [No Abstract]   [Full Text] [Related]  

  • 16. Quantitative thermal imaging of single-walled carbon nanotube devices by scanning Joule expansion microscopy.
    Xie X; Grosse KL; Song J; Lu C; Dunham S; Du F; Islam AE; Li Y; Zhang Y; Pop E; Huang Y; King WP; Rogers JA
    ACS Nano; 2012 Nov; 6(11):10267-75. PubMed ID: 23061768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofunctionalization of carbon nanotubes for atomic force microscopy imaging.
    Woolley AT
    Methods Mol Biol; 2004; 283():305-19. PubMed ID: 15197321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale memory cell based on a nanoelectromechanical switched capacitor.
    Jang JE; Cha SN; Choi YJ; Kang DJ; Butler TP; Hasko DG; Jung JE; Kim JM; Amaratunga GA
    Nat Nanotechnol; 2008 Jan; 3(1):26-30. PubMed ID: 18654446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suspended carbon nanotube quantum wires with two gates.
    Cao J; Wang Q; Wang D; Dai H
    Small; 2005 Jan; 1(1):138-41. PubMed ID: 17193364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.