These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20798820)

  • 1. Neurogranin and synaptic plasticity balance.
    Zhong L; Gerges NZ
    Commun Integr Biol; 2010 Jul; 3(4):340-2. PubMed ID: 20798820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogranin enhances synaptic strength through its interaction with calmodulin.
    Zhong L; Cherry T; Bies CE; Florence MA; Gerges NZ
    EMBO J; 2009 Oct; 28(19):3027-39. PubMed ID: 19713936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors.
    MacDonald JF; Jackson MF; Beazely MA
    Crit Rev Neurobiol; 2006; 18(1-2):71-84. PubMed ID: 17725510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurogranin restores amyloid β-mediated synaptic transmission and long-term potentiation deficits.
    Kaleka KS; Gerges NZ
    Exp Neurol; 2016 Mar; 277():115-123. PubMed ID: 26721336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator.
    Ordyan M; Bartol T; Kennedy M; Rangamani P; Sejnowski T
    PLoS Comput Biol; 2020 Jul; 16(7):e1008015. PubMed ID: 32678848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurogranin Regulates Metaplasticity.
    Zhong L; Gerges NZ
    Front Mol Neurosci; 2019; 12():322. PubMed ID: 32038160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the neurogranin concentrated in spines in the induction of long-term potentiation.
    Zhabotinsky AM; Camp RN; Epstein IR; Lisman JE
    J Neurosci; 2006 Jul; 26(28):7337-47. PubMed ID: 16837580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurogranin phosphorylation fine-tunes long-term potentiation.
    Zhong L; Kaleka KS; Gerges NZ
    Eur J Neurosci; 2011 Jan; 33(2):244-50. PubMed ID: 21198977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct trafficking and expression mechanisms underlie LTP and LTD of NMDA receptor-mediated synaptic responses.
    Peng Y; Zhao J; Gu QH; Chen RQ; Xu Z; Yan JZ; Wang SH; Liu SY; Chen Z; Lu W
    Hippocampus; 2010 May; 20(5):646-58. PubMed ID: 19489005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynaptic injection of CA2+/CaM induces synaptic potentiation requiring CaMKII and PKC activity.
    Wang JH; Kelly PT
    Neuron; 1995 Aug; 15(2):443-52. PubMed ID: 7646896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal alterations in induction threshold and expression magnitude of long-term potentiation and long-term depression at hippocampal synapses.
    Dumas TC
    Hippocampus; 2012 Feb; 22(2):188-99. PubMed ID: 21069779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases.
    Grey KB; Burrell BD
    J Neurophysiol; 2010 May; 103(5):2737-46. PubMed ID: 20457859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of paired-pulse facilitation associated with synaptic potentiation mediated by postsynaptic mechanisms.
    Wang JH; Kelly PT
    J Neurophysiol; 1997 Nov; 78(5):2707-16. PubMed ID: 9356420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurogranin, Encoded by the Schizophrenia Risk Gene NRGN, Bidirectionally Modulates Synaptic Plasticity via Calmodulin-Dependent Regulation of the Neuronal Phosphoproteome.
    Hwang H; Szucs MJ; Ding LJ; Allen A; Ren X; Haensgen H; Gao F; Rhim H; Andrade A; Pan JQ; Carr SA; Ahmad R; Xu W
    Biol Psychiatry; 2021 Feb; 89(3):256-269. PubMed ID: 33032807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca
    Sanderson JL; Scott JD; Dell'Acqua ML
    J Neurosci; 2018 Mar; 38(11):2863-2876. PubMed ID: 29440558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N; Gerber U; Ster J
    J Neurosci; 2016 Nov; 36(45):11521-11531. PubMed ID: 27911756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1.
    Finley J
    Med Hypotheses; 2018 Jul; 116():61-73. PubMed ID: 29857913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+) permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II.
    Asrar S; Zhou Z; Ren W; Jia Z
    PLoS One; 2009; 4(2):e4339. PubMed ID: 19190753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.