These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20799038)

  • 1. Optimising experimental design for high-throughput phenotyping in mice: a case study.
    Karp NA; Baker LA; Gerdin AK; Adams NC; Ramírez-Solis R; White JK
    Mamm Genome; 2010 Oct; 21(9-10):467-76. PubMed ID: 20799038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: High-Throughput Identification of Resistance to Pseudomonas syringae pv. Tomato in Tomato using Seedling Flood Assay.
    J Vis Exp; 2023 Oct; (200):. PubMed ID: 37851522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of temporal variation on design and analysis of mouse knockout phenotyping studies.
    Karp NA; Speak AO; White JK; Adams DJ; Hrabé de Angelis M; Hérault Y; Mott RF
    PLoS One; 2014; 9(10):e111239. PubMed ID: 25343444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen.
    Adissu HA; Estabel J; Sunter D; Tuck E; Hooks Y; Carragher DM; Clarke K; Karp NA; ; Newbigging S; Jones N; Morikawa L; White JK; McKerlie C
    Dis Model Mech; 2014 May; 7(5):515-24. PubMed ID: 24652767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An economic framework to prioritize confirmatory tests after a high-throughput screen.
    Swamidass SJ; Bittker JA; Bodycombe NE; Ryder SP; Clemons PA
    J Biomol Screen; 2010 Jul; 15(6):680-6. PubMed ID: 20547534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.
    Bassett JH; Gogakos A; White JK; Evans H; Jacques RM; van der Spek AH; ; Ramirez-Solis R; Ryder E; Sunter D; Boyde A; Campbell MJ; Croucher PI; Williams GR
    PLoS Genet; 2012; 8(8):e1002858. PubMed ID: 22876197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice.
    Schofield PN; Vogel P; Gkoutos GV; Sundberg JP
    Dis Model Mech; 2012 Jan; 5(1):19-25. PubMed ID: 22028326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promises and Pitfalls of High-Throughput Biological Assays.
    Finak G; Gottardo R
    Methods Mol Biol; 2016; 1415():225-43. PubMed ID: 27115636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-throughput in vivo micronucleus assay for genome instability screening in mice.
    Balmus G; Karp NA; Ng BL; Jackson SP; Adams DJ; McIntyre RE
    Nat Protoc; 2015 Jan; 10(1):205-15. PubMed ID: 25551665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A note on statistical repeatability and study design for high-throughput assays.
    Nicholson G; Holmes C
    Stat Med; 2017 Feb; 36(5):790-798. PubMed ID: 27882571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal design for high-throughput screening via false discovery rate control.
    Feng T; Basu P; Sun W; Ku HT; Mack WJ
    Stat Med; 2019 Jul; 38(15):2816-2827. PubMed ID: 30924183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and approaches to statistical design and inference in high-dimensional investigations.
    Gadbury GL; Garrett KA; Allison DB
    Methods Mol Biol; 2009; 553():181-206. PubMed ID: 19588106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of high-throughput screening assays using cluster enrichment.
    Pu M; Hayashi T; Cottam H; Mulvaney J; Arkin M; Corr M; Carson D; Messer K
    Stat Med; 2012 Dec; 31(30):4175-89. PubMed ID: 22763983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How often should we expect to be wrong? Statistical power, P values, and the expected prevalence of false discoveries.
    Marino MJ
    Biochem Pharmacol; 2018 May; 151():226-233. PubMed ID: 29248599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: Report of an ECVAM Workshop.
    Kirkland D; Pfuhler S; Tweats D; Aardema M; Corvi R; Darroudi F; Elhajouji A; Glatt H; Hastwell P; Hayashi M; Kasper P; Kirchner S; Lynch A; Marzin D; Maurici D; Meunier JR; Müller L; Nohynek G; Parry J; Parry E; Thybaud V; Tice R; van Benthem J; Vanparys P; White P
    Mutat Res; 2007 Mar; 628(1):31-55. PubMed ID: 17293159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single assay-wide variance experimental (SAVE) design for high-throughput screening.
    Murie C; Barette C; Lafanechère L; Nadon R
    Bioinformatics; 2013 Dec; 29(23):3067-72. PubMed ID: 24058057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the mammalian phenotype ontology to support automated exchange of high throughput mouse phenotyping data generated by large-scale mouse knockout screens.
    Smith CL; Eppig JT
    J Biomed Semantics; 2015; 6():11. PubMed ID: 25825651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.