These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20799059)

  • 1. Feedback control strategies for spatial navigation revealed by dynamic modelling of learning in the Morris water maze.
    Fey D; Commins S; Bullinger E
    J Comput Neurosci; 2011 Apr; 30(2):447-54. PubMed ID: 20799059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in cue-dependent spatial navigation may be revealed by in-depth swimming analysis.
    Harvey DR; Brant L; Commins S
    Behav Processes; 2009 Oct; 82(2):190-7. PubMed ID: 19576274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential control of navigation by locale and taxon cues in the Morris water task.
    Hamilton DA; Rosenfelt CS; Whishaw IQ
    Behav Brain Res; 2004 Oct; 154(2):385-97. PubMed ID: 15313026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximal versus distal cue utilization in spatial navigation: the role of visual acuity?
    Carman HM; Mactutus CF
    Neurobiol Learn Mem; 2002 Sep; 78(2):332-46. PubMed ID: 12431421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats.
    Kealy J; Diviney M; Kehoe E; McGonagle V; O'Shea A; Harvey D; Commins S
    Behav Brain Res; 2008 Oct; 192(2):259-63. PubMed ID: 18514924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pre-training to find a hidden platform in the Morris water maze can compensate for a deficit to find a cued platform in a rat model of Parkinson's disease.
    Da Cunha C; Wietzikoski S; Wietzikoski EC; Silva MH; Chandler J; Ferro MM; Andreatini R; Canteras NS
    Neurobiol Learn Mem; 2007 May; 87(4):451-63. PubMed ID: 17223364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of salient and non-salient visuospatial cues by rats in the Morris Water Maze.
    Young GS; Choleris E; Kirkland JB
    Physiol Behav; 2006 Apr; 87(4):794-9. PubMed ID: 16516936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial learning in rats is impaired after degeneration of the nigrostriatal dopaminergic system.
    Mura A; Feldon J
    Mov Disord; 2003 Aug; 18(8):860-71. PubMed ID: 12889075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and nonspatial escape strategies in the Barnes maze.
    Harrison FE; Reiserer RS; Tomarken AJ; McDonald MP
    Learn Mem; 2006; 13(6):809-19. PubMed ID: 17101874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning efficiency: The influence of cue salience during spatial navigation.
    Farina FR; Burke T; Coyle D; Jeter K; McGee M; O'Connell J; Taheny D; Commins S
    Behav Processes; 2015 Jul; 116():17-27. PubMed ID: 25921836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional responding of C57BL/6J mice in the Morris water maze is influenced by visual and vestibular cues and is dependent on the anterior thalamic nuclei.
    Stackman RW; Lora JC; Williams SB
    J Neurosci; 2012 Jul; 32(30):10211-25. PubMed ID: 22836256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretraining or previous non-spatial experience improves spatial learning in the Morris water maze of nucleus basalis lesioned rats.
    Nieto-Escámez FA; Sánchez-Santed F; de Bruin JP
    Behav Brain Res; 2004 Jan; 148(1-2):55-71. PubMed ID: 14684248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserved learning about allocentric cues but impaired flexible memory expression in rats with hippocampal lesions.
    Ramos JM
    Neurobiol Learn Mem; 2010 May; 93(4):506-14. PubMed ID: 20109565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of spatial orientation strategies of male and female Wistar rats in a Morris water escape task.
    Blokland A; Rutten K; Prickaerts J
    Behav Brain Res; 2006 Aug; 171(2):216-24. PubMed ID: 16647766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage.
    Goodrich-Hunsaker NJ; Livingstone SA; Skelton RW; Hopkins RO
    Hippocampus; 2010 Apr; 20(4):481-91. PubMed ID: 19554566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of apparatus design and behavioral measures for the assessment of visuo-spatial learning and memory of mice on the Barnes maze.
    O'Leary TP; Brown RE
    Learn Mem; 2013 Jan; 20(2):85-96. PubMed ID: 23322557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Posterior neocortical (visual cortex) lesions in the rat impair matching-to-place navigation in a swimming pool: a reevaluation of cortical contributions to spatial behavior using a new assessment of spatial versus non-spatial behavior.
    Whishaw IQ
    Behav Brain Res; 2004 Dec; 155(2):177-84. PubMed ID: 15364476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morris water maze: procedures for assessing spatial and related forms of learning and memory.
    Vorhees CV; Williams MT
    Nat Protoc; 2006; 1(2):848-58. PubMed ID: 17406317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response learning of rats in a Morris water maze: involvement of the medical prefrontal cortex.
    de Bruin JP; Swinkels WA; de Brabander JM
    Behav Brain Res; 1997 Apr; 85(1):47-55. PubMed ID: 9095341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entorhinal cortex lesions disrupt the transition between the use of intra- and extramaze cues for navigation in the water maze.
    Oswald CJ; Bannerman DM; Yee BK; Rawlins JN; Honey RC; Good M
    Behav Neurosci; 2003 Jun; 117(3):588-95. PubMed ID: 12802886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.