These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. Aigner A J Biotechnol; 2006 Jun; 124(1):12-25. PubMed ID: 16413079 [TBL] [Abstract][Full Text] [Related]
4. Nonviral in vivo delivery of therapeutic small interfering RNAs. Aigner A Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447 [TBL] [Abstract][Full Text] [Related]
5. Integrin-targeted stabilized nanoparticles for an efficient delivery of siRNAs in vitro and in vivo. Srinivasan C; Peer D; Shimaoka M Methods Mol Biol; 2012; 820():105-16. PubMed ID: 22131028 [TBL] [Abstract][Full Text] [Related]
6. Advances in cell-type specific delivery of RNAi-based therapeutics. Dykxhoorn DM IDrugs; 2010 May; 13(5):325-31. PubMed ID: 20432190 [TBL] [Abstract][Full Text] [Related]
7. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung. Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588 [TBL] [Abstract][Full Text] [Related]
8. Grand challenges in modulating the immune response with RNAi nanomedicines. Goldsmith M; Mizrahy S; Peer D Nanomedicine (Lond); 2011 Dec; 6(10):1771-85. PubMed ID: 22122585 [TBL] [Abstract][Full Text] [Related]
9. RNA interference for the identification of disease-associated genes. Nencioni A; Sandy P; Dillon C; Kissler S; Blume-Jensen P; Van Parijs L Curr Opin Mol Ther; 2004 Apr; 6(2):136-40. PubMed ID: 15195924 [TBL] [Abstract][Full Text] [Related]
10. Induction of therapeutic gene silencing in leukocyte-implicated diseases by targeted and stabilized nanoparticles: a mini-review. Peer D J Control Release; 2010 Nov; 148(1):63-68. PubMed ID: 20624432 [TBL] [Abstract][Full Text] [Related]
11. Delivery of RNA interference therapeutics using polycation-based nanoparticles. Howard KA Adv Drug Deliv Rev; 2009 Jul; 61(9):710-20. PubMed ID: 19356738 [TBL] [Abstract][Full Text] [Related]
12. Exploring cell type-specific internalizing antibodies for targeted delivery of siRNA. Liu B Brief Funct Genomic Proteomic; 2007 Jun; 6(2):112-9. PubMed ID: 17670766 [TBL] [Abstract][Full Text] [Related]
13. In vivo gene silencing in solid tumors by targeted electrically mediated siRNA delivery. Golzio M; Mazzolini L; Ledoux A; Paganin A; Izard M; Hellaudais L; Bieth A; Pillaire MJ; Cazaux C; Hoffmann JS; Couderc B; Teissié J Gene Ther; 2007 May; 14(9):752-9. PubMed ID: 17344906 [TBL] [Abstract][Full Text] [Related]
14. Cationic nanosystems for the delivery of small interfering ribonucleic acid therapeutics: a focus on toxicogenomics. Akhtar S Expert Opin Drug Metab Toxicol; 2010 Nov; 6(11):1347-62. PubMed ID: 20929276 [TBL] [Abstract][Full Text] [Related]
15. An immobilized nanoparticle-based platform for efficient gene knockdown of targeted cells in the circulation. Huang Z; King MR Gene Ther; 2009 Oct; 16(10):1271-82. PubMed ID: 19554031 [TBL] [Abstract][Full Text] [Related]
16. Short interfering RNA (siRNA): tool or therapeutic? Cejka D; Losert D; Wacheck V Clin Sci (Lond); 2006 Jan; 110(1):47-58. PubMed ID: 16336204 [TBL] [Abstract][Full Text] [Related]
17. Modulation of gene expression by siRNA in hematopoietic cells. Scherr M; Eder M Curr Opin Drug Discov Devel; 2005 Mar; 8(2):262-9. PubMed ID: 15782549 [TBL] [Abstract][Full Text] [Related]
18. RNA interference for therapy in the vascular endothelium. Kaufmann J; Ahrens K; Santel A Microvasc Res; 2010 Sep; 80(2):286-93. PubMed ID: 20144624 [TBL] [Abstract][Full Text] [Related]
19. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials. DeVincenzo JP Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462 [TBL] [Abstract][Full Text] [Related]