These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1039 related articles for article (PubMed ID: 20799283)

  • 1. The evolution of volatile compounds profile of "Toscano" dry-cured ham during ripening as revealed by SPME-GC-MS approach.
    Pugliese C; Sirtori F; Calamai L; Franci O
    J Mass Spectrom; 2010 Sep; 45(9):1056-64. PubMed ID: 20799283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham.
    Bermúdez R; Franco D; Carballo J; Lorenzo JM
    Food Sci Technol Int; 2015 Dec; 21(8):581-92. PubMed ID: 25331495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham.
    Marušić N; Vidaček S; Janči T; Petrak T; Medić H
    Meat Sci; 2014 Apr; 96(4):1409-16. PubMed ID: 24398000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a HS-SPME-GC/MS protocol assisted by chemometric tools to study herbivore-induced volatiles in Myrcia splendens.
    Souza Silva ÉA; Saboia G; Jorge NC; Hoffmann C; Dos Santos Isaias RM; Soares GLG; Zini CA
    Talanta; 2017 Dec; 175():9-20. PubMed ID: 28842040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the volatile compounds and odor-active compounds of dry-cured Iberian ham extracted by SPME.
    del Pulgar JS; García C; Reina R; Carrapiso AI
    Food Sci Technol Int; 2013 Jun; 19(3):225-33. PubMed ID: 23685564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of traditional Istrian dry-cured ham by means of physical and chemical analyses and volatile compounds.
    Marušić N; Petrović M; Vidaček S; Petrak T; Medić H
    Meat Sci; 2011 Aug; 88(4):786-90. PubMed ID: 21435796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis.
    Petričević S; Marušić Radovčić N; Lukić K; Listeš E; Medić H
    Meat Sci; 2018 Mar; 137():217-227. PubMed ID: 29223014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of volatile substances in apples from Rosaceae family by headspace solid-phase microextraction followed by GC-qMS.
    Ferreira L; Perestrelo R; Caldeira M; Câmara JS
    J Sep Sci; 2009 Jun; 32(11):1875-88. PubMed ID: 19425016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of cherry wines based on their sensory properties and aromatic fingerprinting using HS-SPME-GC-MS and multivariate analysis.
    Xiao Z; Liu S; Gu Y; Xu N; Shang Y; Zhu J
    J Food Sci; 2014 Mar; 79(3):C284-94. PubMed ID: 24611827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.
    Yang W; Yu J; Pei F; Mariga AM; Ma N; Fang Y; Hu Q
    Food Chem; 2016 Apr; 196():860-6. PubMed ID: 26593566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring volatile compounds during dry-cured ham ripening by solid-phase microextraction coupled to a new direct-extraction device.
    Andrés AI; Cava R; Ruiz J
    J Chromatogr A; 2002 Jul; 963(1-2):83-8. PubMed ID: 12188004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the inclusion of chestnut in the finishing diet on volatile compounds during the manufacture of dry-cured "Lacón" from Celta pig breed.
    Lorenzo JM; Franco D; Carballo J
    Meat Sci; 2014 Jan; 96(1):211-23. PubMed ID: 23911930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pre-cure freezing on the profile of volatile compounds during the processing of Iberian hams.
    Pérez-Palacios T; Ruiz J; Martín D; Grau R; Antequera T
    J Sci Food Agric; 2010 Apr; 90(5):882-90. PubMed ID: 20355126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of novel alumina nanowire solid-phase microextraction fiber coating for ultra-selective determination of volatile esters and alcohols from complicated food samples.
    Zhang Z; Ma Y; Wang Q; Chen A; Pan Z; Li G
    J Chromatogr A; 2013 May; 1290():27-35. PubMed ID: 23582855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beer volatile analysis: optimization of HS/SPME coupled to GC/MS/FID.
    Charry-Parra G; Dejesus-Echevarria M; Perez FJ
    J Food Sci; 2011 Mar; 76(2):C205-11. PubMed ID: 21535736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-fiber solid-phase microextraction coupled with gas chromatography-mass spectrometry for the analysis of volatile compounds in traditional Chinese dry-cured ham.
    Liu H; Huang J; Hu Q; Chen YP; Lai K; Xu J; Ouyang G; Liu Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Mar; 1140():121994. PubMed ID: 32028114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of high-throughput miniaturized sorbent- and solid phase microextraction techniques combined with gas chromatography-mass spectrometry analysis for a rapid screening of volatile and semi-volatile composition of wines--a comparative study.
    Mendes B; Gonçalves J; Câmara JS
    Talanta; 2012 Jan; 88():79-94. PubMed ID: 22265473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Headspace solid-phase microextraction-gas chromatography-mass spectrometry characterization of propolis volatile compounds.
    Pellati F; Prencipe FP; Benvenuti S
    J Pharm Biomed Anal; 2013 Oct; 84():103-11. PubMed ID: 23807002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of Debaryomyces hansenii, Candida deformans and Candida zeylanoides on the aroma formation of dry-cured "lacón".
    Purriños L; Carballo J; Lorenzo JM
    Meat Sci; 2013 Feb; 93(2):344-50. PubMed ID: 23102730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of volatile compounds during the manufacture of dry-cured "lacón," a Spanish traditional meat product.
    Purriños L; Bermúdez R; Franco D; Carballo J; Lorenzo JM
    J Food Sci; 2011; 76(1):C89-97. PubMed ID: 21535660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.