These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 20799302)
1. Formation of surface traps on quantum dots by bidentate chelation and their application in low-potential electrochemiluminescent biosensing. Liu X; Cheng L; Lei J; Liu H; Ju H Chemistry; 2010 Sep; 16(35):10764-70. PubMed ID: 20799302 [TBL] [Abstract][Full Text] [Related]
2. Low-potential electrochemiluminescent sensing based on surface unpassivation of CdTe quantum dots and competition of analyte cation to stabilizer. Cheng L; Liu X; Lei J; Ju H Anal Chem; 2010 Apr; 82(8):3359-64. PubMed ID: 20345128 [TBL] [Abstract][Full Text] [Related]
3. Disposable electrochemiluminescent biosensor using bidentate-chelated CdTe quantum dots as emitters for sensitive detection of glucose. Cheng L; Deng S; Lei J; Ju H Analyst; 2012 Jan; 137(1):140-4. PubMed ID: 22034620 [TBL] [Abstract][Full Text] [Related]
4. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Liu X; Zhang Y; Lei J; Xue Y; Cheng L; Ju H Anal Chem; 2010 Sep; 82(17):7351-6. PubMed ID: 20695454 [TBL] [Abstract][Full Text] [Related]
5. Determination of nitrite based on its quenching effect on anodic electrochemiluminescence of CdSe quantum dots. Liu X; Guo L; Cheng L; Ju H Talanta; 2009 May; 78(3):691-4. PubMed ID: 19269413 [TBL] [Abstract][Full Text] [Related]
6. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle. Liu X; Ju H Anal Chem; 2008 Jul; 80(14):5377-82. PubMed ID: 18522432 [TBL] [Abstract][Full Text] [Related]
7. Enhanced electrochemiluminescence of CdSe quantum dots composited with CNTs and PDDA for sensitive immunoassay. Jie G; Li L; Chen C; Xuan J; Zhu JJ Biosens Bioelectron; 2009 Jul; 24(11):3352-8. PubMed ID: 19477112 [TBL] [Abstract][Full Text] [Related]
8. Quantum dots based potential-resolution dual-targets electrochemiluminescent immunosensor for subtype of tumor marker and its serological evaluation. Liu X; Jiang H; Fang Y; Zhao W; Wang N; Zang G Anal Chem; 2015 Sep; 87(18):9163-9. PubMed ID: 26291342 [TBL] [Abstract][Full Text] [Related]
10. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol. Yao X; Yan P; Tang Q; Deng A; Li J Anal Chim Acta; 2013 Oct; 798():82-8. PubMed ID: 24070487 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Lin D; Wu J; Yan F; Deng S; Ju H Anal Chem; 2011 Jul; 83(13):5214-21. PubMed ID: 21599023 [TBL] [Abstract][Full Text] [Related]
12. New Signal Amplification Strategy Using Semicarbazide as Co-reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction. Ma MN; Zhuo Y; Yuan R; Chai YQ Anal Chem; 2015 Nov; 87(22):11389-97. PubMed ID: 26457826 [TBL] [Abstract][Full Text] [Related]
13. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Liu X; Jiang H; Lei J; Ju H Anal Chem; 2007 Nov; 79(21):8055-60. PubMed ID: 17910416 [TBL] [Abstract][Full Text] [Related]
14. DNA aptasensor for the detection of ATP based on quantum dots electrochemiluminescence. Huang H; Tan Y; Shi J; Liang G; Zhu JJ Nanoscale; 2010 Apr; 2(4):606-12. PubMed ID: 20644766 [TBL] [Abstract][Full Text] [Related]
15. Electrochemiluminescent quenching of quantum dots for ultrasensitive immunoassay through oxygen reduction catalyzed by nitrogen-doped graphene-supported hemin. Deng S; Lei J; Huang Y; Cheng Y; Ju H Anal Chem; 2013 Jun; 85(11):5390-6. PubMed ID: 23659573 [TBL] [Abstract][Full Text] [Related]
16. Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Liu Q; Lu X; Li J; Yao X; Li J Biosens Bioelectron; 2007 Jun; 22(12):3203-9. PubMed ID: 17416515 [TBL] [Abstract][Full Text] [Related]
17. Modification of CdTe quantum dots as temperature-insensitive bioprobes. Wang JH; Wang HQ; Li YQ; Zhang HL; Li XQ; Hua XF; Cao YC; Huang ZL; Zhao YD Talanta; 2008 Jan; 74(4):724-9. PubMed ID: 18371700 [TBL] [Abstract][Full Text] [Related]
18. A new route to the considerable enhancement of glucose oxidase (GOx) activity: the simple assembly of a complex from CdTe quantum dots and GOx, and its glucose sensing. Cao L; Ye J; Tong L; Tang B Chemistry; 2008; 14(31):9633-40. PubMed ID: 18792902 [TBL] [Abstract][Full Text] [Related]
19. An electrochemiluminescence sensor for determination of durabolin based on CdTe QD films by layer-by-layer self-assembly. Wan F; Yu J; Yang P; Ge S; Yan M Anal Bioanal Chem; 2011 May; 400(3):807-14. PubMed ID: 21365349 [TBL] [Abstract][Full Text] [Related]
20. Anodic electrogenerated chemiluminescence of quantum dots: size and stabilizer matter. Hu T; Li T; Yuan L; Liu S; Wang Z Nanoscale; 2012 Sep; 4(17):5447-53. PubMed ID: 22837021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]