BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 20799304)

  • 1. Sexithiophene encapsulated in a single-walled carbon nanotube: an in situ Raman spectroelectrochemical study of a peapod structure.
    Kalbáč M; Kavan L; Gorantla S; Gemming T; Dunsch L
    Chemistry; 2010 Oct; 16(38):11753-9. PubMed ID: 20799304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The change of the state of an endohedral fullerene by encapsulation into SWCNT: a Raman spectroelectrochemical study of Dy3N@C80 peapods.
    Kalbác M; Kavan L; Zukalová M; Yang S; Cech J; Roth S; Dunsch L
    Chemistry; 2007; 13(31):8811-7. PubMed ID: 17665375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Doping of C60 fullerene peapods with lithium vapor: Raman spectroscopic and spectroelectrochemical studies.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2008; 14(20):6231-6. PubMed ID: 18512827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    Anal Chem; 2007 Dec; 79(23):9074-81. PubMed ID: 17973461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic liquid for in situ Vis/NIR and Raman spectroelectrochemistry: Doping of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2003 Sep; 4(9):944-50. PubMed ID: 14562439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies.
    Kalbáč M; Vales V; Kavan L; Dunsch L
    Nanotechnology; 2014 Dec; 25(48):485706. PubMed ID: 25397777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning of sorted double-walled carbon nanotubes by electrochemical charging.
    Kalbac M; Green AA; Hersam MC; Kavan L
    ACS Nano; 2010 Jan; 4(1):459-69. PubMed ID: 20050694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The charging of the carbon nanotube/oligothiophene interphase as studied by in situ electron spin resonance/UV-Vis-NIR spectroelectrochemistry.
    Haubner K; Luspai K; Rapta P; Dunsch L
    Phys Chem Chem Phys; 2011 Aug; 13(29):13403-9. PubMed ID: 21709912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the interaction of single-walled carbon nanotubes (SWCNTs) and polystyrene (PS) at the interface in SWCNT-PS nanocomposites using tip-enhanced Raman spectroscopy.
    Yan X; Suzuki T; Kitahama Y; Sato H; Itoh T; Ozaki Y
    Phys Chem Chem Phys; 2013 Dec; 15(47):20618-24. PubMed ID: 24186236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Host-guest interactions in azafullerene (C59N)-single-wall carbon nanotube (SWCNT) peapod hybrid structures.
    Iizumi Y; Okazaki T; Liu Z; Suenaga K; Nakanishi T; Iijima S; Rotas G; Tagmatarchis N
    Chem Commun (Camb); 2010 Feb; 46(8):1293-5. PubMed ID: 20449281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic evidence for the origin of the dumbbell cyclic voltammogram of single-walled carbon nanotubes.
    Al-zubaidi A; Ishii Y; Yamada S; Matsushita T; Kawasaki S
    Phys Chem Chem Phys; 2013 Dec; 15(47):20672-8. PubMed ID: 24189742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Hsieh YP; Farhat H; Kavan L; Hofmann M; Kong J; Dresselhaus MS
    Nano Lett; 2010 Nov; 10(11):4619-26. PubMed ID: 20939607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical patterning of transparent single-walled carbon nanotube films on plastic substrates.
    Han KN; Li CA; Han B; Bui MP; Pham XH; Choo J; Bachman M; Li GP; Seong GH
    Langmuir; 2010 Jun; 26(11):9136-41. PubMed ID: 20235587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tool box to ascertain the nature of doping and photoresponse in single-walled carbon nanotubes.
    Santidrián A; González-Domínguez JM; Diez-Cabanes V; Hernández-Ferrer J; Maser WK; Benito AM; Anśon-Casaos A; Cornil J; Da Ros T; Kalbáč M
    Phys Chem Chem Phys; 2019 Feb; 21(7):4063-4071. PubMed ID: 30714592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Positions of Potassium in Chemically Doped C(60) Peapods: An in situ Spectroelectrochemical Study.
    Kalbac M; Kavan L; Zukalova M; Dunsch L
    J Phys Chem B; 2004 May; 108(20):6275-80. PubMed ID: 18950111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.