These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 20799376)

  • 1. Mechanism for the direct synthesis of tryptophan from indole and serine: a useful NMR technique for the detection of a reactive intermediate in the reaction mixture.
    Yokoyama Y; Nakakoshi M; Okuno H; Sakamoto Y; Sakurai S
    Magn Reson Chem; 2010 Oct; 48(10):811-7. PubMed ID: 20799376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure elucidation of the intermediate in triethylborane-mediated radical addition of oxime ethers with 2D- and 3D-DOSY NMR.
    Nakakoshi M; Ueda M; Sakurai S; Miyata O; Sugiura M; Naito T
    Magn Reson Chem; 2006 Aug; 44(8):807-12. PubMed ID: 16729260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereocontrolled syntheses of alpha-C-mannosyltryptophan and its analogues.
    Nishikawa T; Koide Y; Kajii S; Wada K; Ishikawa M; Isobe M
    Org Biomol Chem; 2005 Feb; 3(4):687-700. PubMed ID: 15703809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole.
    Cash MT; Miles EW; Phillips RS
    Arch Biochem Biophys; 2004 Dec; 432(2):233-43. PubMed ID: 15542062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of the unstable intermediates in radical addition reaction by using an interfacing microchip combined with an NMR.
    Nakakoshi M; Ueda M; Sakurai S; Asakura K; Utsumi H; Miyata O; Naito T; Takahashi Y
    Magn Reson Chem; 2007 Nov; 45(11):989-92. PubMed ID: 17924352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first one-pot synthesis of L-7-iodotryptophan from 7-iodoindole and serine, and an improved synthesis of other L-7-halotryptophans.
    Smith DR; Willemse T; Gkotsi DS; Schepens W; Maes BU; Ballet S; Goss RJ
    Org Lett; 2014 May; 16(10):2622-5. PubMed ID: 24805161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refolding of [6-19F]tryptophan-labeled Escherichia coli dihydrofolate reductase in the presence of ligand: a stopped-flow NMR spectroscopy study.
    Hoeltzli SD; Frieden C
    Biochemistry; 1998 Jan; 37(1):387-98. PubMed ID: 9425060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediation by indole analogues of electron transfer during oxygen activation in variants of Escherichia coli ribonucleotide reductase R2 lacking the electron-shuttling tryptophan 48.
    Saleh L; Kelch BA; Pathickal BA; Baldwin J; Ley BA; Bollinger JM
    Biochemistry; 2004 May; 43(20):5943-52. PubMed ID: 15147178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and diverse synthesis of indole derivatives.
    Liu H; Dömling A
    J Org Chem; 2009 Sep; 74(17):6895-8. PubMed ID: 19663394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantiospecific synthesis of (+)-alstonisine via a stereospecific osmylation process.
    Yang J; Wearing XZ; Le Quesne PW; Deschamps JR; Cook JM
    J Nat Prod; 2008 Aug; 71(8):1431-40. PubMed ID: 18611051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time refolding studies of 6-19F-tryptophan labeled Escherichia coli dihydrofolate reductase using stopped-flow NMR spectroscopy.
    Hoeltzli SD; Frieden C
    Biochemistry; 1996 Dec; 35(51):16843-51. PubMed ID: 8988023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic contributions to indole-lipid interactions.
    Gaede HC; Yau WM; Gawrisch K
    J Phys Chem B; 2005 Jul; 109(26):13014-23. PubMed ID: 16852615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct spectroscopy of contact charge transfer states: possible consequences for tryptophan excited-state deactivation pathways by O2 and formation of reactive oxygen species.
    Siegert S; Vogeler F; Schiedt J; Weinkauf R
    Phys Chem Chem Phys; 2010 May; 12(19):4996-5006. PubMed ID: 20445903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reexamination of some reactions of 3-(D-galactosylidenehydrazino)-1,2,4-triazino[5,6-b]indole.
    Shaban MA; Nasr AZ; Morgaan AE
    Pharmazie; 2003 Dec; 58(12):860-5. PubMed ID: 14703961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined experimental/theoretical refinement of indole ring geometry using deuterium magnetic resonance and ab initio calculations.
    Koeppe RE; Sun H; van der Wel PC; Scherer EM; Pulay P; Greathouse DV
    J Am Chem Soc; 2003 Oct; 125(40):12268-76. PubMed ID: 14519012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable isotope-enhanced two- and three-dimensional diffusion ordered 13C NMR spectroscopy (SIE-DOSY 13C NMR).
    Vermillion K; Price NP
    J Magn Reson; 2009 Jun; 198(2):209-14. PubMed ID: 19303336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoenzymatic synthesis of prenylated indole derivatives by using a 4-dimethylallyltryptophan synthase from Aspergillus fumigatus.
    Steffan N; Unsöld IA; Li SM
    Chembiochem; 2007 Jul; 8(11):1298-307. PubMed ID: 17577899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of camalexin and structurally related indolic compounds.
    Rauhut T; Glawischnig E
    Phytochemistry; 2009; 70(15-16):1638-44. PubMed ID: 19523656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the stereocontrolled synthesis of hexahydropyrrolo[2,3-b]indoles by electrophilic activation of tryptophan derivatives.
    López CS; Pérez-Balado C; Rodríguez-Graña P; de Lera AR
    Org Lett; 2008 Jan; 10(1):77-80. PubMed ID: 18069844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.