These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 207995)
1. Colchicine potentiates beta-adrenoreceptor-stimulated cyclic AMP in lymphoma cells by an action distal to the receptor. Insel PA; Kennedy MS Nature; 1978 Jun; 273(5662):471-3. PubMed ID: 207995 [No Abstract] [Full Text] [Related]
2. Temperature-dependent changes in binding to beta-adrenergic receptors of intact S49 lymphoma cells. Implications for the state of the receptor that activates adenylate cyclase under physiological conditions. Insel PA; Sanda M J Biol Chem; 1979 Jul; 254(14):6554-9. PubMed ID: 221502 [No Abstract] [Full Text] [Related]
3. Relationship between the beta-adrenergic receptor and adenylate cyclase. Ross EM; Maguire ME; Sturgill TW; Biltonen RL; Gilman AG J Biol Chem; 1977 Aug; 252(16):5761-75. PubMed ID: 195960 [No Abstract] [Full Text] [Related]
4. The agonist-specific effect of magnesium ion on binding by beta-adrenergic receptors in S49 lymphoma cells. Interaction of GTP and magnesium in adenylate cyclase activation. Bird SJ; Maguire ME J Biol Chem; 1978 Dec; 253(24):8826-34. PubMed ID: 214432 [No Abstract] [Full Text] [Related]
10. Coupling of beta-adrenoreceptors in rat uterine smooth muscle. Krall JF; Barrett JD; Korenman SG Biol Reprod; 1981 May; 24(4):859-66. PubMed ID: 6264983 [No Abstract] [Full Text] [Related]
11. Cytochalasin B enhances hormone and cholera toxin-stimulated cyclic AMP accumulation in S49 lymphoma cells. Insel PA; Koachman AM J Biol Chem; 1982 Aug; 257(16):9717-23. PubMed ID: 6286631 [No Abstract] [Full Text] [Related]
12. Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Haga T; Ross EM; Anderson HJ; Gilman AG Proc Natl Acad Sci U S A; 1977 May; 74(5):2016-20. PubMed ID: 17119 [TBL] [Abstract][Full Text] [Related]
13. Differences in the beta-adrenergic responsiveness between high and low passage rat glioma C6 cells. Mallorga P; Tallman JF; Fishman PH Biochim Biophys Acta; 1981 Dec; 678(2):221-9. PubMed ID: 6274415 [TBL] [Abstract][Full Text] [Related]
14. Effects of experimental insulin-dependent diabetes on the beta-adrenergic-receptor-coupled adenylate-cyclase system and lipolysis in fat cells of the rat. Lacasa D; Agli B; Giudicelli Y Eur J Biochem; 1983 Feb; 130(3):457-64. PubMed ID: 6297906 [No Abstract] [Full Text] [Related]
16. Characterization of adenylate cyclase activity in asthmatic neutrophil sonicates. Galant SP; Allred S; Griffiths R Am Rev Respir Dis; 1980 Aug; 122(2):231-8. PubMed ID: 6251741 [No Abstract] [Full Text] [Related]
17. Studies of cyclic AMP action using mutant tissue culture cells. Coffino P; Bourne HR; Insel PA; Melmon KL; Johnson G; Vigne J In Vitro; 1978 Jan; 14(1):140-5. PubMed ID: 23989 [TBL] [Abstract][Full Text] [Related]
18. Development of beta-adrenergic receptors and the in vitro accumulation of cyclic AMP in the chick spinal cord. Prozialeck WC; Pylypiw A; Ross L Brain Res; 1982 Jan; 255(1):49-63. PubMed ID: 6275958 [TBL] [Abstract][Full Text] [Related]
19. The cardiac sarcoplasmic reticulum - glycogenolytic complex, an internal beta adrenergic receptor. Entman ML; Goldstein MA; Schwartz A Life Sci; 1976 Dec; 19(11):1623-30. PubMed ID: 187884 [No Abstract] [Full Text] [Related]
20. High potency congeners of isoproterenol. Binding to beta-adrenergic receptors, activation of adenylate cyclase and stimulation of intracellular cyclic AMP synthesis. Schramm M; Eimerl S; Goodman M; Verlander MS; Khan MM; Melmon K Biochem Pharmacol; 1986 Aug; 35(16):2805-9. PubMed ID: 3017363 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]