These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20799697)

  • 41. Reversible clustering of pH- and temperature-responsive Janus magnetic nanoparticles.
    Isojima T; Lattuada M; Vander Sande JB; Hatton TA
    ACS Nano; 2008 Sep; 2(9):1799-806. PubMed ID: 19206418
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interfacial assembly of turnip yellow mosaic virus nanoparticles.
    Kaur G; He J; Xu J; Pingali S; Jutz G; Böker A; Niu Z; Li T; Rawlinson D; Emrick T; Lee B; Thiyagarajan P; Russell TP; Wang Q
    Langmuir; 2009 May; 25(9):5168-76. PubMed ID: 19354217
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aggregation-resistant water-soluble gold nanoparticles.
    Rouhana LL; Jaber JA; Schlenoff JB
    Langmuir; 2007 Dec; 23(26):12799-801. PubMed ID: 18004894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mixed-monolayer-protected gold nanoparticles for emulsion stabilization.
    Kubowicz S; Daillant J; Dubois M; Delsanti M; Verbavatz JM; Möhwald H
    Langmuir; 2010 Feb; 26(3):1642-8. PubMed ID: 19924989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering.
    Oh MK; Yun S; Kim SK; Park S
    Anal Chim Acta; 2009 Sep; 649(1):111-6. PubMed ID: 19664470
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transmetalation reaction between hydrophobic silver nanoparticles and aqueous chloroaurate ions at the air-water interface.
    Pasricha R; Swami A; Sastry M
    J Phys Chem B; 2005 Oct; 109(42):19620-6. PubMed ID: 16853537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers.
    Azzam T; Bronstein L; Eisenberg A
    Langmuir; 2008 Jun; 24(13):6521-9. PubMed ID: 18484759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface enhanced Raman scattering from layered assemblies of close-packed gold nanoparticles.
    Jung HY; Park YK; Park S; Kim SK
    Anal Chim Acta; 2007 Oct; 602(2):236-43. PubMed ID: 17933609
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of gold nanoparticles of varying size in improving the lipase activity within cationic reverse micelles.
    Maiti S; Das D; Shome A; Das PK
    Chemistry; 2010 Feb; 16(6):1941-50. PubMed ID: 20013961
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence correlation spectroscopy reveals strong fluorescence quenching of FITC adducts on PEGylated gold nanoparticles in water and the presence of fluorescent aggregates of desorbed thiolate ligands.
    Loumaigne M; Praho R; Nutarelli D; Werts MH; Débarre A
    Phys Chem Chem Phys; 2010 Sep; 12(36):11004-14. PubMed ID: 20668732
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of stripelike and hexagonal self-assembly of gold nanoparticles by the tuning of interactions between triphenylene ligands.
    Shen Z; Yamada M; Miyake M
    J Am Chem Soc; 2007 Nov; 129(46):14271-80. PubMed ID: 17958422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. One pot hemimicellar synthesis of amphiphilic Janus gold nanoclusters for novel electronic attributes.
    Biji P; Sarangi NK; Patnaik A
    Langmuir; 2010 Sep; 26(17):14047-57. PubMed ID: 20712349
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A simple strategy to improve the interfacial activity of true Janus gold nanoparticles: a shorter hydrophilic capping ligand.
    Fernandez-Rodriguez MA; Chen L; Deming CP; Rodriguez-Valverde MA; Chen S; Cabrerizo-Vilchez MA; Hidalgo-Alvarez R
    Soft Matter; 2016 Jan; 12(1):31-4. PubMed ID: 26451801
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectroscopic characterization and Langmuir-Blodgett films of a novel azopolymer material.
    Haro M; Ross DJ; Oriol L; Gascón I; Cea P; López MC; Aroca RF
    Langmuir; 2007 Feb; 23(4):1804-9. PubMed ID: 17279659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface studied by vibrational sum frequency spectroscopy and molecular dynamics.
    Harper K; Minofar B; Sierra-Hernandez MR; Casillas-Ituarte NN; Roeselova M; Allen HC
    J Phys Chem A; 2009 Mar; 113(10):2015-24. PubMed ID: 19195991
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of decanethiolate gold nanoparticles synthesized by one-phase and two-phase methods.
    Sun Y; Frenkel AI; White H; Zhang L; Zhu Y; Xu H; Yang JC; Koga T; Zaitsev V; Rafailovich MH; Sokolov JC
    J Phys Chem B; 2006 Nov; 110(46):23022-30. PubMed ID: 17107140
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials.
    Rao CN; Kalyanikutty KP
    Acc Chem Res; 2008 Apr; 41(4):489-99. PubMed ID: 18333620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison study of the solution phase versus solid phase place exchange reactions in the controlled functionalization of gold nanoparticles.
    Shaffer AW; Worden JG; Huo Q
    Langmuir; 2004 Sep; 20(19):8343-51. PubMed ID: 15350112
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water.
    Wang Z; Tan B; Hussain I; Schaeffer N; Wyatt MF; Brust M; Cooper AI
    Langmuir; 2007 Jan; 23(2):885-95. PubMed ID: 17209648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Self-assembly of small gold nanoparticles through interligand interaction.
    Kanehara M; Kodzuka E; Teranishi T
    J Am Chem Soc; 2006 Oct; 128(40):13084-94. PubMed ID: 17017788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.