These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
610 related articles for article (PubMed ID: 20799717)
21. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Mironava T; Hadjiargyrou M; Simon M; Jurukovski V; Rafailovich MH Nanotoxicology; 2010 Mar; 4(1):120-37. PubMed ID: 20795906 [TBL] [Abstract][Full Text] [Related]
22. Exploring the surface charge on peptide-gold nanoparticle conjugates by force spectroscopy. Guerrero AR; Caballero L; Adeva A; Melo F; Kogan MJ Langmuir; 2010 Jul; 26(14):12026-32. PubMed ID: 20557062 [TBL] [Abstract][Full Text] [Related]
23. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation. Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336 [TBL] [Abstract][Full Text] [Related]
24. Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. Wang T; Bai J; Jiang X; Nienhaus GU ACS Nano; 2012 Feb; 6(2):1251-9. PubMed ID: 22250809 [TBL] [Abstract][Full Text] [Related]
25. Free Energy of Bare and Capped Gold Nanoparticles Permeating through a Lipid Bilayer. Mhashal AR; Roy S Chemphyschem; 2016 Nov; 17(21):3504-3514. PubMed ID: 27595236 [TBL] [Abstract][Full Text] [Related]
26. Gold nanoparticle probes: design and in vitro applications in cancer cell culture. Unak G; Ozkaya F; Medine EI; Kozgus O; Sakarya S; Bekis R; Unak P; Timur S Colloids Surf B Biointerfaces; 2012 Feb; 90():217-26. PubMed ID: 22070896 [TBL] [Abstract][Full Text] [Related]
27. Coarse-grained molecular dynamics simulations of cobra cytotoxin A3 interactions with a lipid bilayer: penetration of loops into membranes. Su ZY; Wang YT J Phys Chem B; 2011 Feb; 115(5):796-802. PubMed ID: 21192700 [TBL] [Abstract][Full Text] [Related]
28. Cell membranes open "doors" for cationic nanoparticles/biomolecules: insights into uptake kinetics. Lin J; Alexander-Katz A ACS Nano; 2013 Dec; 7(12):10799-808. PubMed ID: 24251827 [TBL] [Abstract][Full Text] [Related]
30. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers. Gao J; Zhang O; Ren J; Wu C; Zhao Y Langmuir; 2016 Feb; 32(6):1601-10. PubMed ID: 26794292 [TBL] [Abstract][Full Text] [Related]
31. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes. Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518 [TBL] [Abstract][Full Text] [Related]
32. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
33. Transdermal cellular membrane penetration of proteins with gold nanoparticles: a molecular dynamics study. Gupta R; Kashyap N; Rai B Phys Chem Chem Phys; 2017 Mar; 19(11):7537-7545. PubMed ID: 28252121 [TBL] [Abstract][Full Text] [Related]
34. Computational simulations of the interaction of lipid membranes with DNA-functionalized gold nanoparticles. Lee OS; Schatz GC Methods Mol Biol; 2011; 726():283-96. PubMed ID: 21424456 [TBL] [Abstract][Full Text] [Related]
35. Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Stobiecka M; Hepel M Biomaterials; 2011 Apr; 32(12):3312-21. PubMed ID: 21306772 [TBL] [Abstract][Full Text] [Related]
36. Membrane-mediated interactions between nanoparticles on a substrate. Liang Q; Chen QH; Ma YQ J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863 [TBL] [Abstract][Full Text] [Related]
37. Simulation study on gold nanoparticle-cellular membrane complex in endocytosis process. Zheng F; Pan J; Yin X; Li J; Wang F; Zhao L J Nanosci Nanotechnol; 2013 Jun; 13(6):3990-8. PubMed ID: 23862438 [TBL] [Abstract][Full Text] [Related]
38. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. Li Y; Chen X; Gu N J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046 [TBL] [Abstract][Full Text] [Related]
39. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress. Lai K; Wang B; Zhang Y; Zheng Y Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312 [TBL] [Abstract][Full Text] [Related]
40. Nanoparticle-functionalized polymer platform for controlling metastatic cancer cell adhesion, shape, and motility. Lee H; Jang Y; Seo J; Nam JM; Char K ACS Nano; 2011 Jul; 5(7):5444-56. PubMed ID: 21702475 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]