BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20799744)

  • 1. Acoustic-wave-induced analyte separation in narrow fluidic confinements in the presence of interfacial interactions.
    Bhat B; Chakraborty S
    Langmuir; 2010 Sep; 26(18):15035-43. PubMed ID: 20799744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements.
    Das S; Chakraborty S
    Electrophoresis; 2008 Mar; 29(5):1115-24. PubMed ID: 18232026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of streaming potential on the transport and separation of charged spherical solutes in nanochannels subjected to particle-wall interactions.
    Das S; Chakraborty S
    Langmuir; 2009 Sep; 25(17):9863-72. PubMed ID: 19618905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels.
    Das S; Chakraborty S
    Langmuir; 2008 Aug; 24(15):7704-10. PubMed ID: 18620440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements.
    Das S; Chakraborty S
    Langmuir; 2010 Jul; 26(13):11589-96. PubMed ID: 20476752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion correlation forces between uncharged dielectric walls.
    Wernersson E; Kjellander R
    J Chem Phys; 2008 Oct; 129(14):144701. PubMed ID: 19045159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer through streaming effects in time-periodic pressure-driven nanochannel flows with interfacial slip.
    Goswami P; Chakraborty S
    Langmuir; 2010 Jan; 26(1):581-90. PubMed ID: 19894749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-newtonian fluids in narrow confinements.
    Bandopadhyay A; Chakraborty S
    Langmuir; 2011 Oct; 27(19):12243-52. PubMed ID: 21863830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of Particle Transport to a Solid Surface from an Impinging Jet under Surface and External Force Fields.
    Yang C; Dabros T; Li D; Czarnecki J; Masliyah JH
    J Colloid Interface Sci; 1998 Dec; 208(1):226-240. PubMed ID: 9820768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios.
    Garai A; Chakraborty S
    Electrophoresis; 2010 Mar; 31(5):843-9. PubMed ID: 20191546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical approach to the effect of finite-sized end reservoirs on electroosmotic transport through narrow confinements.
    Pal D; Chakraborty S
    Electrophoresis; 2011 Feb; 32(5):638-45. PubMed ID: 21294133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the nature of the forces controlling selectivity in the high performance capillary electrochromatographic separation of peptides.
    Walhagen K; Huber MI; Hennessy TP; Hearn MT
    Biopolymers; 2003; 71(4):429-53. PubMed ID: 14517897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes.
    Petsev DN
    J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of particle-wall interactions during particle free fall.
    Chein R; Liao W
    J Colloid Interface Sci; 2005 Aug; 288(1):104-13. PubMed ID: 15927568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the effect of image charges and ion-wall dispersion forces on electric double layer interactions.
    Wernersson E; Kjellander R
    J Chem Phys; 2006 Oct; 125(15):154702. PubMed ID: 17059278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic transport of charged samples through rectangular channels with small zeta potentials.
    Dutta D
    Anal Chem; 2008 Jun; 80(12):4723-30. PubMed ID: 18476719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.