BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20799816)

  • 1. Combined image-processing algorithms for improved optical coherence tomography of prostate nerves.
    Chitchian S; Weldon TP; Fiddy MA; Fried NM
    J Biomed Opt; 2010; 15(4):046014. PubMed ID: 20799816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation of optical coherence tomography images for differentiation of the cavernous nerves from the prostate gland.
    Chitchian S; Weldon TP; Fried NM
    J Biomed Opt; 2009; 14(4):044033. PubMed ID: 19725744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denoising during optical coherence tomography of the prostate nerves via wavelet shrinkage using dual-tree complex wavelet transform.
    Chitchian S; Fiddy MA; Fried NM
    J Biomed Opt; 2009; 14(1):014031. PubMed ID: 19256719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelet denoising during optical coherence tomography of the prostate nerves using the complex wavelet transform.
    Chitchian S; Fiddy M; Fried NM
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3016-9. PubMed ID: 19163341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
    Lingley-Papadopoulos CA; Loew MH; Zara JM
    J Biomed Opt; 2009; 14(4):044010. PubMed ID: 19725722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter.
    Adler DC; Ko TH; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2878-80. PubMed ID: 15645810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic vessel lumen segmentation and stent strut detection in intravascular optical coherence tomography.
    Tsantis S; Kagadis GC; Katsanos K; Karnabatidis D; Bourantas G; Nikiforidis GC
    Med Phys; 2012 Jan; 39(1):503-13. PubMed ID: 22225321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speckle reduction in optical coherence tomography images using digital filtering.
    Ozcan A; Bilenca A; Desjardins AE; Bouma BE; Tearney GJ
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jul; 24(7):1901-10. PubMed ID: 17728812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.
    Niu S; Chen Q; de Sisternes L; Rubin DL; Zhang W; Liu Q
    Comput Biol Med; 2014 Nov; 54():116-28. PubMed ID: 25240102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parametric imaging of cancer with optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    J Biomed Opt; 2010; 15(4):046029. PubMed ID: 20799831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images.
    González-López A; Ortega M; Penedo MG; Charlón P
    Stud Health Technol Inform; 2014; 207():47-54. PubMed ID: 25488210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography.
    Hidalgo-Aguirre M; Gitelman J; Lesk MR; Costantino S
    J Biomed Opt; 2015 Nov; 20(11):116008. PubMed ID: 26598974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Denoising and 4D visualization of OCT images.
    Gargesha M; Jenkins MW; Rollins AM; Wilson DL
    Opt Express; 2008 Aug; 16(16):12313-33. PubMed ID: 18679509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images.
    Zhang A; Xi J; Liang W; Gao T; Li X
    Opt Lett; 2014 Aug; 39(15):4392-5. PubMed ID: 25078185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle reduction in optical coherence tomography by image registration and matrix completion.
    Cheng J; Duan L; Wong DW; Tao D; Akiba M; Liu J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):162-9. PubMed ID: 25333114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis.
    Lingley-Papadopoulos CA; Loew MH; Manyak MJ; Zara JM
    J Biomed Opt; 2008; 13(2):024003. PubMed ID: 18465966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration--method and clinical examples.
    Jørgensen TM; Thomadsen J; Christensen U; Soliman W; Sander B
    J Biomed Opt; 2007; 12(4):041208. PubMed ID: 17867797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards multi-directional OCT for speckle noise reduction.
    Ramrath L; Moreno G; Mueller H; Bonin T; Huettmann G; Schweikard A
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):815-23. PubMed ID: 18979821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping tissue optical attenuation to identify cancer using optical coherence tomography.
    McLaughlin RA; Scolaro L; Robbins P; Saunders C; Jacques SL; Sampson DD
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):657-64. PubMed ID: 20426168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.