BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 20799839)

  • 1. Changes of collagen and nicotinamide adenine dinucleotide in human cancerous and normal prostate tissues studied using native fluorescence spectroscopy with selective excitation wavelength.
    Pu Y; Wang W; Tang G; Alfano RR
    J Biomed Opt; 2010; 15(4):047008. PubMed ID: 20799839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser induced fluorescence spectroscopy analysis of kidney tissues: A pilot study for the identification of renal cell carcinoma.
    Pavithran M S; Lukose J; Barik BK; Periasami A; Kartha VB; Chawla A; Chidangil S
    J Biophotonics; 2023 Nov; 16(11):e202300021. PubMed ID: 37589180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox imaging of human breast cancer core biopsies: a preliminary investigation.
    Xu HN; Tchou J; Li LZ
    Acad Radiol; 2013 Jun; 20(6):764-8. PubMed ID: 23664401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical redox imaging indices discriminate human breast cancer from normal tissues.
    Xu HN; Tchou J; Feng M; Zhao H; Li LZ
    J Biomed Opt; 2016 Nov; 21(11):114003. PubMed ID: 27896360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A blinded study using laser induced endogenous fluorescence spectroscopy to differentiate ex vivo spine tumor, healthy muscle, and healthy bone.
    Sperber J; Zachem TJ; Prakash R; Owolo E; Yamamoto K; Nguyen AD; Hockenberry H; Ross WA; Herndon JE; Codd PJ; Goodwin CR
    Sci Rep; 2024 Jan; 14(1):1921. PubMed ID: 38253556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a translational photoacoustic needle sensing probe for interstitial photoacoustic spectral analysis.
    Lin WK; Ni L; Wang X; Guo JL; Xu G
    Photoacoustics; 2023 Jun; 31():100519. PubMed ID: 37362870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of different types of tumors based on photoacoustic spectral analysis: preclinical feasibility studies on skin tumors.
    Zhang M; Wen L; Zhou C; Pan J; Wu S; Wang P; Zhang H; Chen P; Chen Q; Wang X; Cheng Q
    J Biomed Opt; 2023 Jun; 28(6):065004. PubMed ID: 37325191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraoperative microscopic autofluorescence detection and characterization in brain tumors using stimulated Raman histology and two-photon fluorescence.
    Fürtjes G; Reinecke D; von Spreckelsen N; Meißner AK; Rueß D; Timmer M; Freudiger C; Ion-Margineanu A; Khalid F; Watrinet K; Mawrin C; Chmyrov A; Goldbrunner R; Bruns O; Neuschmelting V
    Front Oncol; 2023; 13():1146031. PubMed ID: 37234975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of prostate cancer progression using a translational needle photoacoustic sensing probe: Preliminary study with intact human prostates
    Ni L; Lin WK; Kasputis A; Postiff D; Siddiqui J; Allaway MJ; Davenport MS; Wei JT; Guo JL; Morgan TM; Udager AM; Wang X; Xu G
    Photoacoustics; 2022 Dec; 28():100418. PubMed ID: 36386297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quick identification of prostate cancer by wavelet transform-based photoacoustic power spectrum analysis.
    Wu S; Liu Y; Chen Y; Xu C; Chen P; Zhang M; Ye W; Wu D; Huang S; Cheng Q
    Photoacoustics; 2022 Mar; 25():100327. PubMed ID: 34987958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the aggressiveness of prostate cancer using an all-optical needle photoacoustic sensing probe: feasibility study.
    Ni L; Siddiqui J; Udager AM; Jo J; Wei JT; Davenport MS; Carson PL; Fowlkes JB; Wang X; Xu G
    Biomed Opt Express; 2021 Aug; 12(8):4873-4888. PubMed ID: 34513230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of NADH fluorescence properties under one-photon excitation with respect to temperature, pH, and binding to lactate dehydrogenase.
    Cannon TM; Lagarto JL; Dyer BT; Garcia E; Kelly DJ; Peters NS; Lyon AR; French PMW; Dunsby C
    OSA Contin; 2021 May; 4(5):1610-1625. PubMed ID: 34458690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prostate cancer identification via photoacoustic spectroscopy and machine learning.
    Chen Y; Xu C; Zhang Z; Zhu A; Xu X; Pan J; Liu Y; Wu D; Huang S; Cheng Q
    Photoacoustics; 2021 Sep; 23():100280. PubMed ID: 34168956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Relationship between the Strength Characteristics of Cerebral Aneurysm Walls with Their Status and Laser-Induced Fluorescence Data.
    Tsibulskaya E; Lipovka A; Chupakhin A; Dubovoy A; Parshin D; Maslov N
    Biomedicines; 2021 May; 9(5):. PubMed ID: 34065958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods.
    Xue J; Pu Y; Smith J; Gao X; Wang C; Wu B
    Sci Rep; 2021 Jan; 11(1):2282. PubMed ID: 33500529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping metabolism of liver tissue using two-photon FLIM.
    Rodimova S; Kuznetsova D; Bobrov N; Elagin V; Shcheslavskiy V; Zagainov V; Zagaynova E
    Biomed Opt Express; 2020 Aug; 11(8):4458-4470. PubMed ID: 32923056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-field optical spectroscopy system integrating reflectance and spatial frequency domain imaging to measure attenuation-corrected intrinsic tissue fluorescence in radical prostatectomy specimens.
    Beaulieu E; Laurence A; Birlea M; Sheehy G; Angulo-Rodriguez L; Latour M; Albadine R; Saad F; Trudel D; Leblond F
    Biomed Opt Express; 2020 Apr; 11(4):2052-2072. PubMed ID: 32341866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and Multiphoton Imaging for Tissue Characterization of a Model of Postmenopausal Ovarian Cancer.
    Sawyer TW; Koevary JW; Howard CC; Austin OJ; Rice PFS; Hutchens GV; Chambers SK; Connolly DC; Barton JK
    Lasers Surg Med; 2020 Dec; 52(10):993-1009. PubMed ID: 32311117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal Zidovudine Treatment Modifies Early Development of Rat Osteoid - Confocal Microspectroscopy Analysis.
    Drzazga Z; Ciszek W; Binek M
    J Fluoresc; 2019 Sep; 29(5):1257-1263. PubMed ID: 31620936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial assessment of aggressive prostate cancer by physio-chemical photoacoustics: An ex vivo study with intact human prostates.
    Huang S; Qin Y; Chen Y; Pan J; Xu C; Wu D; Chao WY; Wei JT; Tomlins SA; Wang X; Fowlkes JB; Carson PL; Cheng Q; Xu G
    Med Phys; 2018 Jun; ():. PubMed ID: 29935081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.