These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 20799890)
1. Three-dimensional tissue scaffolds from interbonded poly(ε-caprolactone) fibrous matrices with controlled porosity. Tang Y; Wong C; Wang H; Sutti A; Kirkland M; Wang X; Lin T Tissue Eng Part C Methods; 2011 Feb; 17(2):209-18. PubMed ID: 20799890 [TBL] [Abstract][Full Text] [Related]
2. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Soliman S; Sant S; Nichol JW; Khabiry M; Traversa E; Khademhosseini A J Biomed Mater Res A; 2011 Mar; 96(3):566-74. PubMed ID: 21254388 [TBL] [Abstract][Full Text] [Related]
3. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580 [TBL] [Abstract][Full Text] [Related]
4. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Soliman S; Pagliari S; Rinaldi A; Forte G; Fiaccavento R; Pagliari F; Franzese O; Minieri M; Di Nardo P; Licoccia S; Traversa E Acta Biomater; 2010 Apr; 6(4):1227-37. PubMed ID: 19887125 [TBL] [Abstract][Full Text] [Related]
5. Porous alginate/poly(ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity. Grandi C; Di Liddo R; Paganin P; Lora S; Dalzoppo D; Feltrin G; Giraudo C; Tommasini M; Conconi MT; Parnigotto PP Int J Mol Med; 2011 Mar; 27(3):455-67. PubMed ID: 21206967 [TBL] [Abstract][Full Text] [Related]
6. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Weber N; Lee YS; Shanmugasundaram S; Jaffe M; Arinzeh TL Acta Biomater; 2010 Sep; 6(9):3550-6. PubMed ID: 20371302 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of three-dimensional poly(ε-caprolactone) scaffolds with hierarchical pore structures for tissue engineering. Zhang Q; Luo H; Zhang Y; Zhou Y; Ye Z; Tan W; Lang M Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2094-103. PubMed ID: 23498237 [TBL] [Abstract][Full Text] [Related]
8. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering. Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211 [TBL] [Abstract][Full Text] [Related]
9. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment. Tang Y; Zhao Y; Wang H; Gao Y; Liu X; Wang X; Lin T J Biomed Mater Res A; 2012 Aug; 100(8):2071-8. PubMed ID: 22581705 [TBL] [Abstract][Full Text] [Related]
10. Comparison of cellular proliferation on dense and porous PCL scaffolds. Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692 [TBL] [Abstract][Full Text] [Related]
11. Fibrous poly(chitosan-g-DL-lactic acid) scaffolds prepared via electro-wet-spinning. Wan Y; Cao X; Zhang S; Wang S; Wu Q Acta Biomater; 2008 Jul; 4(4):876-86. PubMed ID: 18356124 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. Bagherzadeh R; Latifi M; Najar SS; Tehran MA; Kong L J Biomed Mater Res A; 2013 Mar; 101(3):765-74. PubMed ID: 22961915 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Theiler S; Mela P; Diamantouros SE; Jockenhoevel S; Keul H; Möller M Biotechnol Bioeng; 2011 Mar; 108(3):694-703. PubMed ID: 21246513 [TBL] [Abstract][Full Text] [Related]
14. Porous biodegradable scaffold: predetermined porosity by dissolution of poly(ester-anhydride) fibers from polyester matrix. Rich J; Korhonen H; Hakala R; Korventausta J; Elomaa L; Seppälä J Macromol Biosci; 2009 Jul; 9(7):654-60. PubMed ID: 19165824 [TBL] [Abstract][Full Text] [Related]
15. Effects of mixing intensity on cell seeding and proliferation in three-dimensional fibrous matrices. Ouyang A; Yang ST Biotechnol Bioeng; 2007 Feb; 96(2):371-80. PubMed ID: 16865727 [TBL] [Abstract][Full Text] [Related]
16. Cell proliferation and migration in silk fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 May; 30(15):2956-65. PubMed ID: 19249094 [TBL] [Abstract][Full Text] [Related]
17. Preparation and evaluation of microporous organogel scaffolds for cell viability and proliferation. Lukyanova L; Franceschi-Messant S; Vicendo P; Perez E; Rico-Lattes I; Weinkamer R Colloids Surf B Biointerfaces; 2010 Aug; 79(1):105-12. PubMed ID: 20427161 [TBL] [Abstract][Full Text] [Related]
18. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358 [TBL] [Abstract][Full Text] [Related]
19. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Neves SC; Moreira Teixeira LS; Moroni L; Reis RL; Van Blitterswijk CA; Alves NM; Karperien M; Mano JF Biomaterials; 2011 Feb; 32(4):1068-79. PubMed ID: 20980050 [TBL] [Abstract][Full Text] [Related]
20. Dermal fibroblast infiltration of poly(ε-caprolactone) scaffolds fabricated by melt electrospinning in a direct writing mode. Farrugia BL; Brown TD; Upton Z; Hutmacher DW; Dalton PD; Dargaville TR Biofabrication; 2013 Jun; 5(2):025001. PubMed ID: 23443534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]