BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20800051)

  • 21. Reconstitution of holo-aequorin with apoaequorin mRNA and coelenterazine in zebrafish embryos.
    Chan CM; Miller AL; Webb SE
    Cold Spring Harb Protoc; 2013 May; 2013(5):456-60. PubMed ID: 23637361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of aequorin for G protein-coupled receptor hit identification and compound profiling.
    Brough SJ; Shah P
    Methods Mol Biol; 2009; 552():181-98. PubMed ID: 19513650
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The crystal structure of the photoprotein aequorin at 2.3 A resolution.
    Head JF; Inouye S; Teranishi K; Shimomura O
    Nature; 2000 May; 405(6784):372-6. PubMed ID: 10830969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slow luminescence kinetics of semi-synthetic aequorin: expression, purification and structure determination of cf3-aequorin.
    Inouye S; Tomabechi Y; Hosoya T; Sekine SI; Shirouzu M
    J Biochem; 2018 Sep; 164(3):247-255. PubMed ID: 29796619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the 5-HT2b receptor in evaluation of aequorin detection of calcium mobilization for miniaturized GPCR high-throughput screening.
    Gilchrist MA; Cacace A; Harden DG
    J Biomol Screen; 2008 Jul; 13(6):486-93. PubMed ID: 18566482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chiral deaza-coelenterazine analogs for probing a substrate-binding site in the Ca2+-binding photoprotein aequorin.
    Inouye S; Sumida Y; Tomabechi Y; Taguchi J; Shirouzu M; Hosoya T
    PLoS One; 2021; 16(6):e0251743. PubMed ID: 34115795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Luminescence of imidazo[1,2-a]pyrazin-3(7H)-one compounds.
    Teranishi K
    Bioorg Chem; 2007 Feb; 35(1):82-111. PubMed ID: 17007903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aequorin luminescence-based assay for 5-hydroxytryptamine (serotonin) type 3 receptor characterization.
    Walstab J; Combrink S; Brüss M; Göthert M; Niesler B; Bönisch H
    Anal Biochem; 2007 Sep; 368(2):185-92. PubMed ID: 17617370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins.
    Knight MR; Read ND; Campbell AK; Trewavas AJ
    J Cell Biol; 1993 Apr; 121(1):83-90. PubMed ID: 8458875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blue fluorescent protein from the calcium-sensitive photoprotein aequorin is a heat resistant enzyme, catalyzing the oxidation of coelenterazine.
    Inouye S
    FEBS Lett; 2004 Nov; 577(1-2):105-10. PubMed ID: 15527769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An automated aequorin luminescence-based functional calcium assay for G-protein-coupled receptors.
    Ungrin MD; Singh LM; Stocco R; Sas DE; Abramovitz M
    Anal Biochem; 1999 Jul; 272(1):34-42. PubMed ID: 10405290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-emitters involved in the luminescence of coelenterazine.
    Shimomura O; Teranishi K
    Luminescence; 2000; 15(1):51-8. PubMed ID: 10660666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying nonselective hits from a homogeneous calcium assay screen.
    Cassutt KJ; Orsini MJ; Abousleiman M; Colone D; Tang W
    J Biomol Screen; 2007 Mar; 12(2):285-7. PubMed ID: 17289936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Picosecond fluorescence relaxation spectroscopy of the calcium-discharged photoproteins aequorin and obelin.
    van Oort B; Eremeeva EV; Koehorst RB; Laptenok SP; van Amerongen H; van Berkel WJ; Malikova NP; Markova SV; Vysotski ES; Visser AJ; Lee J
    Biochemistry; 2009 Nov; 48(44):10486-91. PubMed ID: 19810751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The calcium-binding photoprotein clytin II: Expression of the preferred human codon-optimized clytin II gene in Chinese hamster ovary-K1 cells and its use in the G-protein-coupled receptor assays.
    Inouye S; Sato JI; Sahara-Miura Y; Hisada S
    Protein Expr Purif; 2024 Aug; 220():106481. PubMed ID: 38583788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semisynthetic photoprotein reporters for tracking fast Ca(2+) transients.
    Malikova NP; Borgdorff AJ; Vysotski ES
    Photochem Photobiol Sci; 2015 Dec; 14(12):2213-24. PubMed ID: 26508209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents.
    Eremeeva EV; Jiang T; Malikova NP; Li M; Vysotski ES
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32751691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioluminescent and biochemical properties of Cys-free Ca
    Eremeeva EV; Vysotski ES
    J Photochem Photobiol B; 2017 Sep; 174():97-105. PubMed ID: 28756158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring of intracellular calcium in Saccharomyces cerevisiae with an apoaequorin cDNA expression system.
    Nakajima-Shimada J; Iida H; Tsuji FI; Anraku Y
    Proc Natl Acad Sci U S A; 1991 Aug; 88(15):6878-82. PubMed ID: 1862111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct.
    Eremeeva EV; Markova SV; van Berkel WJ; Vysotski ES
    J Photochem Photobiol B; 2013 Oct; 127():133-9. PubMed ID: 24041851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.