BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20800051)

  • 41. The in situ regeneration and extraction of recombinant aequorin from Escherichia coli cells and the purification of extracted aequorin.
    Shimomura O; Inouye S
    Protein Expr Purif; 1999 Jun; 16(1):91-5. PubMed ID: 10336865
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetically modified semisynthetic bioluminescent photoprotein variants: simultaneous dual-analyte assay in a single well employing time resolution of decay kinetics.
    Rowe L; Combs K; Deo S; Ensor C; Daunert S; Qu X
    Anal Chem; 2008 Nov; 80(22):8470-6. PubMed ID: 18937418
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of antagonist activity of spantide family at human neurokinin receptors measured by aequorin luminescence-based functional calcium assay.
    Janecka A; Poels J; Fichna J; Studzian K; Vanden Broeck J
    Regul Pept; 2005 Nov; 131(1-3):23-8. PubMed ID: 15990182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light-emitting properties of recombinant semi-synthetic aequorins and recombinant fluorescein-conjugated aequorin for measuring cellular calcium.
    Shimomura O; Musicki B; Kishi Y; Inouye S
    Cell Calcium; 1993 May; 14(5):373-8. PubMed ID: 8519061
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Formation of Coelenteramine from 2-Peroxycoelenterazine in the Ca
    Inouye S; Nakamura M; Hosoya T
    Photochem Photobiol; 2022 Sep; 98(5):1068-1076. PubMed ID: 34971002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bioluminescence and kinetic aspects of double mutated aequorin variants.
    Zeinoddini M; Fathi-Roudsari M; Hosseinkhani S; Khajeh K
    Int J Biol Macromol; 2018 Jun; 112():163-168. PubMed ID: 29382580
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface properties of "jellyfish": Langmuir monolayer and Langmuir-Blodgett film studies of recombinant aequorin.
    Wang C; Micic M; Ensor M; Daunert S; Leblanc RM
    Langmuir; 2007 Jul; 23(14):7602-7. PubMed ID: 17555338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein.
    Stepanyuk GA; Liu ZJ; Vysotski ES; Lee J; Rose JP; Wang BC
    Proteins; 2009 Feb; 74(3):583-93. PubMed ID: 18655070
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differences in stability of recombinant apoaequorin within subcellular compartments.
    Badminton MN; Sala-Newby GB; Kendall JM; Campbell AK
    Biochem Biophys Res Commun; 1995 Dec; 217(3):950-7. PubMed ID: 8554620
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Apoaequorin monitors degradation of endoplasmic reticulum (ER) proteins initiated by loss of ER Ca(2+).
    Jeffery J; Kendall JM; Campbell AK
    Biochem Biophys Res Commun; 2000 Feb; 268(3):711-5. PubMed ID: 10679270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of the Ca2+-regulated photoprotein obelin at 1.7 A resolution determined directly from its sulfur substructure.
    Liu ZJ; Vysotski ES; Chen CJ; Rose JP; Lee J; Wang BC
    Protein Sci; 2000 Nov; 9(11):2085-93. PubMed ID: 11152120
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nucleoplasmin-targeted aequorin provides evidence for a nuclear calcium barrier.
    Badminton MN; Kendall JM; Sala-Newby G; Campbell AK
    Exp Cell Res; 1995 Jan; 216(1):236-43. PubMed ID: 7813626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measurement of intracellular calcium using bioluminescent aequorin expressed in human cells.
    Sheu YA; Kricka LJ; Pritchett DB
    Anal Biochem; 1993 Mar; 209(2):343-7. PubMed ID: 8470808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of recombinant biotinylated aequorin in microtiter and membrane-based assays: purification of recombinant apoaequorin from Escherichia coli.
    Stults NL; Stocks NF; Rivera H; Gray J; McCann RO; O'Kane D; Cummings RD; Cormier MJ; Smith DF
    Biochemistry; 1992 Feb; 31(5):1433-42. PubMed ID: 1737001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cloning, expression, purification and characterization of an isotype of clytin, a calcium-binding photoprotein from the luminous hydromedusa Clytia gregarium.
    Inouye S
    J Biochem; 2008 May; 143(5):711-7. PubMed ID: 18296715
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatography of isoforms of recombinant apoaequorin and method for the preparation of aequorin.
    Masuda H; Takenaka Y; Shikamoto Y; Kagawa M; Mizuno H; Tsuji FI
    Protein Expr Purif; 2003 Oct; 31(2):181-7. PubMed ID: 14550635
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Luminescence of aequorin is triggered by the binding of two calcium ions.
    Shimomura O
    Biochem Biophys Res Commun; 1995 Jun; 211(2):359-63. PubMed ID: 7794244
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca(2+)-loaded apoprotein conformation state.
    Stepanyuk GA; Liu ZJ; Burakova LP; Lee J; Rose J; Vysotski ES; Wang BC
    Biochim Biophys Acta; 2013 Oct; 1834(10):2139-46. PubMed ID: 23891746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptation of aequorin functional assay to high throughput screening.
    Le Poul E; Hisada S; Mizuguchi Y; Dupriez VJ; Burgeon E; Detheux M
    J Biomol Screen; 2002 Feb; 7(1):57-65. PubMed ID: 11897056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrogen-bond networks between the C-terminus and Arg from the first α-helix stabilize photoprotein molecules.
    Eremeeva EV; Burakova LP; Krasitskaya VV; Kudryavtsev AN; Shimomura O; Frank LA
    Photochem Photobiol Sci; 2014 Mar; 13(3):541-7. PubMed ID: 24463740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.