These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20800051)

  • 81. The moss, Physcomitrella patens, transformed with apoaequorin cDNA responds to cold shock, mechanical perturbation and pH with transient increases in cytoplasmic calcium.
    Russell AJ; Knight MR; Cove DJ; Knight CD; Trewavas AJ; Wang TL
    Transgenic Res; 1996 May; 5(3):167-70. PubMed ID: 8673143
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A novel yellow fluorescent protein of recombinant apoPholasin with dehydrocoelenterazine.
    Inouye S; Miura-Sahara Y; Iimori R; Sakata Y; Hazama Y; Yoshida S; Nakamura M; Hosoya T
    Biochem Biophys Res Commun; 2020 May; 526(2):404-409. PubMed ID: 32223929
    [TBL] [Abstract][Full Text] [Related]  

  • 83. C6-Deoxy coelenterazine analogues as an efficient substrate for glow luminescence reaction of nanoKAZ: the mutated catalytic 19 kDa component of Oplophorus luciferase.
    Inouye S; Sato J; Sahara-Miura Y; Yoshida S; Kurakata H; Hosoya T
    Biochem Biophys Res Commun; 2013 Jul; 437(1):23-8. PubMed ID: 23792095
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Oxygen activation of apo-obelin-coelenterazine complex.
    Eremeeva EV; Natashin PV; Song L; Zhou Y; van Berkel WJ; Liu ZJ; Vysotski ES
    Chembiochem; 2013 Apr; 14(6):739-45. PubMed ID: 23494831
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Real-time monitoring of morphological changes in living cells by electronic cell sensor arrays: an approach to study G protein-coupled receptors.
    Yu N; Atienza JM; Bernard J; Blanc S; Zhu J; Wang X; Xu X; Abassi YA
    Anal Chem; 2006 Jan; 78(1):35-43. PubMed ID: 16383308
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes.
    Bonora M; Giorgi C; Bononi A; Marchi S; Patergnani S; Rimessi A; Rizzuto R; Pinton P
    Nat Protoc; 2013 Nov; 8(11):2105-18. PubMed ID: 24113784
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mn(2+)-activated luminescence of the photoprotein obelin.
    Vysotski ES; Trofimov CP; Bondaŕ VS; Frank LA; Markova SV; Illarionov BA
    Arch Biochem Biophys; 1995 Jan; 316(1):92-9. PubMed ID: 7840683
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Quantitative Analysis of Microbe-Associated Molecular Pattern (MAMP)-Induced Ca(2+) Transients in Plants.
    Trempel F; Ranf S; Scheel D; Lee J
    Methods Mol Biol; 2016; 1398():331-44. PubMed ID: 26867636
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Glowing jellyfish, luminescence and a molecule called coelenterazine.
    Jones K; Hibbert F; Keenan M
    Trends Biotechnol; 1999 Dec; 17(12):477-81. PubMed ID: 10557160
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Bioluminescence of the Ca(2+)-binding photoprotein, aequorin, after histidine modification.
    Ohmiya Y; Tsuji FI
    FEBS Lett; 1993 Apr; 320(3):267-70. PubMed ID: 8462695
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Aequorin-based functional assays for G-protein-coupled receptors, ion channels, and tyrosine kinase receptors.
    Dupriez VJ; Maes K; Le Poul E; Burgeon E; Detheux M
    Recept Channels; 2002; 8(5-6):319-30. PubMed ID: 12690959
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Aequorin-expressing mammalian cell lines used to report Ca2+ mobilization.
    Button D; Brownstein M
    Cell Calcium; 1993 Oct; 14(9):663-71. PubMed ID: 7694803
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Semi-synthetic aequorin. An improved tool for the measurement of calcium ion concentration.
    Shimomura O; Musicki B; Kishi Y
    Biochem J; 1988 Apr; 251(2):405-10. PubMed ID: 3401214
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Bioluminescence Detection of Superoxide Anion Using Aequorin.
    Rahmani H; Ghavamipour F; Sajedi RH
    Anal Chem; 2019 Oct; 91(20):12768-12774. PubMed ID: 31500415
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Resistivity to denaturation of the apoprotein of aequorin and reconstitution of the luminescent photoprotein from the partially denatured apoprotein.
    Shimomura O; Shimomura A
    Biochem J; 1981 Dec; 199(3):825-8. PubMed ID: 7340830
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Aequorea victoria bioluminescence moves into an exciting new era.
    Kendall JM; Badminton MN
    Trends Biotechnol; 1998 May; 16(5):216-24. PubMed ID: 9621461
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Expression of apo-aequorin during embryonic development; how much is needed for calcium imaging?
    Créton R; Steele ME; Jaffe LF
    Cell Calcium; 1997 Dec; 22(6):439-46. PubMed ID: 9502193
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Recombinant aequorin and recombinant semi-synthetic aequorins. Cellular Ca2+ ion indicators.
    Shimomura O; Inouye S; Musicki B; Kishi Y
    Biochem J; 1990 Sep; 270(2):309-12. PubMed ID: 2400391
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Signal amplification system for DNA hybridization assays based on in vitro expression of a DNA label encoding apoaequorin.
    White SR; Christopoulos TK
    Nucleic Acids Res; 1999 Oct; 27(19):e25. PubMed ID: 10481037
    [TBL] [Abstract][Full Text] [Related]  

  • 100. One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography.
    Glynou K; Ioannou PC; Christopoulos TK
    Protein Expr Purif; 2003 Feb; 27(2):384-90. PubMed ID: 12597900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.