These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 20800277)
1. Miscibility of choline-substituted polyphosphazenes with PLGA and osteoblast activity on resulting blends. Weikel AL; Owens SG; Morozowich NL; Deng M; Nair LS; Laurencin CT; Allcock HR Biomaterials; 2010 Nov; 31(33):8507-15. PubMed ID: 20800277 [TBL] [Abstract][Full Text] [Related]
2. The influence of side group modification in polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA. Krogman NR; Weikel AL; Kristhart KA; Nukavarapu SP; Deng M; Nair LS; Laurencin CT; Allcock HR Biomaterials; 2009 Jun; 30(17):3035-41. PubMed ID: 19345410 [TBL] [Abstract][Full Text] [Related]
3. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes. Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637 [TBL] [Abstract][Full Text] [Related]
5. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography. Duan S; Yang X; Mao J; Qi B; Cai Q; Shen H; Yang F; Deng X; Wang S J Biomed Mater Res A; 2013 Feb; 101(2):307-17. PubMed ID: 22733644 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic, bioactive etheric polyphosphazene-poly(lactide-co-glycolide) blends for bone tissue engineering. Deng M; Nair LS; Nukavarapu SP; Kumbar SG; Brown JL; Krogman NR; Weikel AL; Allcock HR; Laurencin CT J Biomed Mater Res A; 2010 Jan; 92(1):114-25. PubMed ID: 19165780 [TBL] [Abstract][Full Text] [Related]
7. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering. Deng M; Nair LS; Nukavarapu SP; Jiang T; Kanner WA; Li X; Kumbar SG; Weikel AL; Krogman NR; Allcock HR; Laurencin CT Biomaterials; 2010 Jun; 31(18):4898-908. PubMed ID: 20334909 [TBL] [Abstract][Full Text] [Related]
8. Effect of side group chemistry on the properties of biodegradable L-alanine cosubstituted polyphosphazenes. Singh A; Krogman NR; Sethuraman S; Nair LS; Sturgeon JL; Brown PW; Laurencin CT; Allcock HR Biomacromolecules; 2006 Mar; 7(3):914-8. PubMed ID: 16529431 [TBL] [Abstract][Full Text] [Related]
9. Characterization of perivascular poly(lactic-co-glycolic acid) films containing paclitaxel. Jackson JK; Smith J; Letchford K; Babiuk KA; Machan L; Signore P; Hunter WL; Wang K; Burt HM Int J Pharm; 2004 Sep; 283(1-2):97-109. PubMed ID: 15363506 [TBL] [Abstract][Full Text] [Related]
10. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Jiang T; Abdel-Fattah WI; Laurencin CT Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408 [TBL] [Abstract][Full Text] [Related]
11. Miscibility and in vitro osteocompatibility of biodegradable blends of poly[(ethyl alanato) (p-phenyl phenoxy) phosphazene] and poly(lactic acid-glycolic acid). Deng M; Nair LS; Nukavarapu SP; Kumbar SG; Jiang T; Krogman NR; Singh A; Allcock HR; Laurencin CT Biomaterials; 2008 Jan; 29(3):337-49. PubMed ID: 17942150 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
14. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model. Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601 [TBL] [Abstract][Full Text] [Related]
15. The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone. Tang ZG; Callaghan JT; Hunt JA Biomaterials; 2005 Nov; 26(33):6618-24. PubMed ID: 15935466 [TBL] [Abstract][Full Text] [Related]
16. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
18. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene. Shan D; Huang Z; Zhao Y; Cai Q; Yang X Biomed Mater; 2014 Nov; 9(6):061001. PubMed ID: 25426734 [TBL] [Abstract][Full Text] [Related]
19. Polyester scaffolds with bimodal pore size distribution for tissue engineering. Sosnowski S; Woźniak P; Lewandowska-Szumieł M Macromol Biosci; 2006 Jun; 6(6):425-34. PubMed ID: 16761274 [TBL] [Abstract][Full Text] [Related]
20. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications. Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT Biomaterials; 2005 Jan; 26(1):1-9. PubMed ID: 15193876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]