These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20800303)

  • 1. Potential of Arabidopsis systems biology to advance the biofuel field.
    Vanholme R; Van Acker R; Boerjan W
    Trends Biotechnol; 2010 Nov; 28(11):543-7. PubMed ID: 20800303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Application of systems biology and synthetic biology in strain improvement for biofuel production].
    Zhao X; Bai F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):880-7. PubMed ID: 20954387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production.
    Weng JK; Li X; Bonawitz ND; Chapple C
    Curr Opin Biotechnol; 2008 Apr; 19(2):166-72. PubMed ID: 18403196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in modifying lignin for enhanced biofuel production.
    Simmons BA; Loqué D; Ralph J
    Curr Opin Plant Biol; 2010 Jun; 13(3):313-20. PubMed ID: 20359939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of systems biology towards microbial fuel production.
    Gowen CM; Fong SS
    Trends Microbiol; 2011 Oct; 19(10):516-24. PubMed ID: 21871807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
    Byrt CS; Grof CP; Furbank RT
    J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A chimeric NST repressor has the potential to improve glucose productivity from plant cell walls.
    Iwase A; Hideno A; Watanabe K; Mitsuda N; Ohme-Takagi M
    J Biotechnol; 2009 Jul; 142(3-4):279-84. PubMed ID: 19497342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals.
    Picataggio S
    Curr Opin Biotechnol; 2009 Jun; 20(3):325-9. PubMed ID: 19481438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced biofuel production in microbes.
    Peralta-Yahya PP; Keasling JD
    Biotechnol J; 2010 Feb; 5(2):147-62. PubMed ID: 20084640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Industrial biotechnology: tools and applications.
    Tang WL; Zhao H
    Biotechnol J; 2009 Dec; 4(12):1725-39. PubMed ID: 19844915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing native lignin macromolecular configuration in Arabidopsis thaliana in specific cell wall types: further insights into limited substrate degeneracy and assembly of the lignins of ref8, fah 1-2 and C4H::F5H lines.
    Patten AM; Jourdes M; Cardenas CL; Laskar DD; Nakazawa Y; Chung BY; Franceschi VR; Davin LB; Lewis NG
    Mol Biosyst; 2010 Mar; 6(3):499-515. PubMed ID: 20174679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New improvements for lignocellulosic ethanol.
    Margeot A; Hahn-Hagerdal B; Edlund M; Slade R; Monot F
    Curr Opin Biotechnol; 2009 Jun; 20(3):372-80. PubMed ID: 19502048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches.
    Jang YS; Park JM; Choi S; Choi YJ; Seung do Y; Cho JH; Lee SY
    Biotechnol Adv; 2012; 30(5):989-1000. PubMed ID: 21889585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass.
    Andrianov V; Borisjuk N; Pogrebnyak N; Brinker A; Dixon J; Spitsin S; Flynn J; Matyszczuk P; Andryszak K; Laurelli M; Golovkin M; Koprowski H
    Plant Biotechnol J; 2010 Apr; 8(3):277-87. PubMed ID: 20051035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-wall carbohydrates and their modification as a resource for biofuels.
    Pauly M; Keegstra K
    Plant J; 2008 May; 54(4):559-68. PubMed ID: 18476863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and biotechnological approaches for biofuel crop improvement.
    Vega-Sánchez ME; Ronald PC
    Curr Opin Biotechnol; 2010 Apr; 21(2):218-24. PubMed ID: 20181473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant cell wall polymers as precursors for biofuels.
    Pauly M; Keegstra K
    Curr Opin Plant Biol; 2010 Jun; 13(3):305-12. PubMed ID: 20097119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofuel production improvement with genome-scale models: The role of cell composition.
    Senger RS
    Biotechnol J; 2010 Jul; 5(7):671-85. PubMed ID: 20540108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofuels: biomolecular engineering fundamentals and advances.
    Li H; Cann AF; Liao JC
    Annu Rev Chem Biomol Eng; 2010; 1():19-36. PubMed ID: 22432571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.